Sharp exponential band tails in highly disordered lead sulfide quantum dot arrays

We employ temperature-dependent, illumination intensity modulated photocurrent spectroscopy (IMPS) to investigate the intra-band-gap density of states in films of PbS quantum dots (QDs). Using both coplanar electrode and stacked photovoltaic device configurations, IMPS measurements of PbS QD arrays...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical Review. B, Condensed Matter and Materials Physics Condensed Matter and Materials Physics, 2012-10, Vol.86 (15), Article 155313
Hauptverfasser: Erslev, Peter T., Chen, Hsiang-Yu, Gao, Jianbo, Beard, Matthew C., Frank, Arthur J., van de Lagemaat, Jao, Johnson, Justin C., Luther, Joseph M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 15
container_start_page
container_title Physical Review. B, Condensed Matter and Materials Physics
container_volume 86
creator Erslev, Peter T.
Chen, Hsiang-Yu
Gao, Jianbo
Beard, Matthew C.
Frank, Arthur J.
van de Lagemaat, Jao
Johnson, Justin C.
Luther, Joseph M.
description We employ temperature-dependent, illumination intensity modulated photocurrent spectroscopy (IMPS) to investigate the intra-band-gap density of states in films of PbS quantum dots (QDs). Using both coplanar electrode and stacked photovoltaic device configurations, IMPS measurements of PbS QD arrays show evidence of carrier trapping in exponential band tails extending from the band edges into the gap. The band tails have characteristic energies near 14 meV, similar to those found in other larger grain, polycrystalline bulk semiconductors, rather than the large Urbach energies normally associated with nanocrystals and porous/polycrystalline films. This result helps explain recent success in using QD solids in device applications and indicates potential for QD materials to compete with bulk materials in semiconductor applications.
doi_str_mv 10.1103/PhysRevB.86.155313
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709726201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1709726201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-811b80c1bbd44574524d91fe1aad50f26de966ce937d859519fbf100cd193a8c3</originalsourceid><addsrcrecordid>eNo1kL1OwzAYRSMEEqXwAkwWE0uKPztO4hEq_qRK_EtslmN_IUZpktoOom9PUGG6dzg6w0mSU6ALAMovHptteMavq0WZL0AIDnwvmU2HpoyL9_3pU1mmFBgcJkchfFIKmczYLHl6abQfCH4PfYdddLolle4sidq1gbiONO6jabfEutB7ix4taVFbEsa2dhbJZtRdHNfE9pFo7_U2HCcHtW4DnvztPHm7uX5d3qWrh9v75eUqNRkUMS0BqpIaqCqbZaLIBMushBpBaytozXKLMs8NSl7YUkgBsq5qoNRYkFyXhs-Ts523D9GpYFxE05i-69BEBVQUnMkJOt9Bg-83I4ao1i4YbFvdYT8GBQWVBcsZhQllO9T4PgSPtRq8W2u_nWTqN7L6j6zKXO0i8x_9JHHI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709726201</pqid></control><display><type>article</type><title>Sharp exponential band tails in highly disordered lead sulfide quantum dot arrays</title><source>American Physical Society Journals</source><creator>Erslev, Peter T. ; Chen, Hsiang-Yu ; Gao, Jianbo ; Beard, Matthew C. ; Frank, Arthur J. ; van de Lagemaat, Jao ; Johnson, Justin C. ; Luther, Joseph M.</creator><creatorcontrib>Erslev, Peter T. ; Chen, Hsiang-Yu ; Gao, Jianbo ; Beard, Matthew C. ; Frank, Arthur J. ; van de Lagemaat, Jao ; Johnson, Justin C. ; Luther, Joseph M. ; National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><description>We employ temperature-dependent, illumination intensity modulated photocurrent spectroscopy (IMPS) to investigate the intra-band-gap density of states in films of PbS quantum dots (QDs). Using both coplanar electrode and stacked photovoltaic device configurations, IMPS measurements of PbS QD arrays show evidence of carrier trapping in exponential band tails extending from the band edges into the gap. The band tails have characteristic energies near 14 meV, similar to those found in other larger grain, polycrystalline bulk semiconductors, rather than the large Urbach energies normally associated with nanocrystals and porous/polycrystalline films. This result helps explain recent success in using QD solids in device applications and indicates potential for QD materials to compete with bulk materials in semiconductor applications.</description><identifier>ISSN: 1098-0121</identifier><identifier>EISSN: 1550-235X</identifier><identifier>DOI: 10.1103/PhysRevB.86.155313</identifier><language>eng</language><publisher>United States</publisher><subject>Arrays ; Chemical and Material Sciences ; Condensed matter ; Devices ; Electrodes ; IMP ; NANOSCIENCE AND NANOTECHNOLOGY ; Photoelectric effect ; Quantum dots ; Semiconductors ; SOLAR ENERGY ; Solar Energy - Photovoltaics ; Trapping</subject><ispartof>Physical Review. B, Condensed Matter and Materials Physics, 2012-10, Vol.86 (15), Article 155313</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-811b80c1bbd44574524d91fe1aad50f26de966ce937d859519fbf100cd193a8c3</citedby><cites>FETCH-LOGICAL-c417t-811b80c1bbd44574524d91fe1aad50f26de966ce937d859519fbf100cd193a8c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,882,2863,2864,27905,27906</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1057329$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Erslev, Peter T.</creatorcontrib><creatorcontrib>Chen, Hsiang-Yu</creatorcontrib><creatorcontrib>Gao, Jianbo</creatorcontrib><creatorcontrib>Beard, Matthew C.</creatorcontrib><creatorcontrib>Frank, Arthur J.</creatorcontrib><creatorcontrib>van de Lagemaat, Jao</creatorcontrib><creatorcontrib>Johnson, Justin C.</creatorcontrib><creatorcontrib>Luther, Joseph M.</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><title>Sharp exponential band tails in highly disordered lead sulfide quantum dot arrays</title><title>Physical Review. B, Condensed Matter and Materials Physics</title><description>We employ temperature-dependent, illumination intensity modulated photocurrent spectroscopy (IMPS) to investigate the intra-band-gap density of states in films of PbS quantum dots (QDs). Using both coplanar electrode and stacked photovoltaic device configurations, IMPS measurements of PbS QD arrays show evidence of carrier trapping in exponential band tails extending from the band edges into the gap. The band tails have characteristic energies near 14 meV, similar to those found in other larger grain, polycrystalline bulk semiconductors, rather than the large Urbach energies normally associated with nanocrystals and porous/polycrystalline films. This result helps explain recent success in using QD solids in device applications and indicates potential for QD materials to compete with bulk materials in semiconductor applications.</description><subject>Arrays</subject><subject>Chemical and Material Sciences</subject><subject>Condensed matter</subject><subject>Devices</subject><subject>Electrodes</subject><subject>IMP</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>Photoelectric effect</subject><subject>Quantum dots</subject><subject>Semiconductors</subject><subject>SOLAR ENERGY</subject><subject>Solar Energy - Photovoltaics</subject><subject>Trapping</subject><issn>1098-0121</issn><issn>1550-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNo1kL1OwzAYRSMEEqXwAkwWE0uKPztO4hEq_qRK_EtslmN_IUZpktoOom9PUGG6dzg6w0mSU6ALAMovHptteMavq0WZL0AIDnwvmU2HpoyL9_3pU1mmFBgcJkchfFIKmczYLHl6abQfCH4PfYdddLolle4sidq1gbiONO6jabfEutB7ix4taVFbEsa2dhbJZtRdHNfE9pFo7_U2HCcHtW4DnvztPHm7uX5d3qWrh9v75eUqNRkUMS0BqpIaqCqbZaLIBMushBpBaytozXKLMs8NSl7YUkgBsq5qoNRYkFyXhs-Ts523D9GpYFxE05i-69BEBVQUnMkJOt9Bg-83I4ao1i4YbFvdYT8GBQWVBcsZhQllO9T4PgSPtRq8W2u_nWTqN7L6j6zKXO0i8x_9JHHI</recordid><startdate>20121017</startdate><enddate>20121017</enddate><creator>Erslev, Peter T.</creator><creator>Chen, Hsiang-Yu</creator><creator>Gao, Jianbo</creator><creator>Beard, Matthew C.</creator><creator>Frank, Arthur J.</creator><creator>van de Lagemaat, Jao</creator><creator>Johnson, Justin C.</creator><creator>Luther, Joseph M.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20121017</creationdate><title>Sharp exponential band tails in highly disordered lead sulfide quantum dot arrays</title><author>Erslev, Peter T. ; Chen, Hsiang-Yu ; Gao, Jianbo ; Beard, Matthew C. ; Frank, Arthur J. ; van de Lagemaat, Jao ; Johnson, Justin C. ; Luther, Joseph M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-811b80c1bbd44574524d91fe1aad50f26de966ce937d859519fbf100cd193a8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Arrays</topic><topic>Chemical and Material Sciences</topic><topic>Condensed matter</topic><topic>Devices</topic><topic>Electrodes</topic><topic>IMP</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>Photoelectric effect</topic><topic>Quantum dots</topic><topic>Semiconductors</topic><topic>SOLAR ENERGY</topic><topic>Solar Energy - Photovoltaics</topic><topic>Trapping</topic><toplevel>online_resources</toplevel><creatorcontrib>Erslev, Peter T.</creatorcontrib><creatorcontrib>Chen, Hsiang-Yu</creatorcontrib><creatorcontrib>Gao, Jianbo</creatorcontrib><creatorcontrib>Beard, Matthew C.</creatorcontrib><creatorcontrib>Frank, Arthur J.</creatorcontrib><creatorcontrib>van de Lagemaat, Jao</creatorcontrib><creatorcontrib>Johnson, Justin C.</creatorcontrib><creatorcontrib>Luther, Joseph M.</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physical Review. B, Condensed Matter and Materials Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Erslev, Peter T.</au><au>Chen, Hsiang-Yu</au><au>Gao, Jianbo</au><au>Beard, Matthew C.</au><au>Frank, Arthur J.</au><au>van de Lagemaat, Jao</au><au>Johnson, Justin C.</au><au>Luther, Joseph M.</au><aucorp>National Renewable Energy Lab. (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sharp exponential band tails in highly disordered lead sulfide quantum dot arrays</atitle><jtitle>Physical Review. B, Condensed Matter and Materials Physics</jtitle><date>2012-10-17</date><risdate>2012</risdate><volume>86</volume><issue>15</issue><artnum>155313</artnum><issn>1098-0121</issn><eissn>1550-235X</eissn><abstract>We employ temperature-dependent, illumination intensity modulated photocurrent spectroscopy (IMPS) to investigate the intra-band-gap density of states in films of PbS quantum dots (QDs). Using both coplanar electrode and stacked photovoltaic device configurations, IMPS measurements of PbS QD arrays show evidence of carrier trapping in exponential band tails extending from the band edges into the gap. The band tails have characteristic energies near 14 meV, similar to those found in other larger grain, polycrystalline bulk semiconductors, rather than the large Urbach energies normally associated with nanocrystals and porous/polycrystalline films. This result helps explain recent success in using QD solids in device applications and indicates potential for QD materials to compete with bulk materials in semiconductor applications.</abstract><cop>United States</cop><doi>10.1103/PhysRevB.86.155313</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1098-0121
ispartof Physical Review. B, Condensed Matter and Materials Physics, 2012-10, Vol.86 (15), Article 155313
issn 1098-0121
1550-235X
language eng
recordid cdi_proquest_miscellaneous_1709726201
source American Physical Society Journals
subjects Arrays
Chemical and Material Sciences
Condensed matter
Devices
Electrodes
IMP
NANOSCIENCE AND NANOTECHNOLOGY
Photoelectric effect
Quantum dots
Semiconductors
SOLAR ENERGY
Solar Energy - Photovoltaics
Trapping
title Sharp exponential band tails in highly disordered lead sulfide quantum dot arrays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T10%3A17%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sharp%20exponential%20band%20tails%20in%20highly%20disordered%20lead%20sulfide%20quantum%20dot%20arrays&rft.jtitle=Physical%20Review.%20B,%20Condensed%20Matter%20and%20Materials%20Physics&rft.au=Erslev,%20Peter%20T.&rft.aucorp=National%20Renewable%20Energy%20Lab.%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2012-10-17&rft.volume=86&rft.issue=15&rft.artnum=155313&rft.issn=1098-0121&rft.eissn=1550-235X&rft_id=info:doi/10.1103/PhysRevB.86.155313&rft_dat=%3Cproquest_osti_%3E1709726201%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1709726201&rft_id=info:pmid/&rfr_iscdi=true