CFD high-order accurate scheme Jacobian-Free Newton Krylov method

•We applied JFNK method to CFD high-order accurate scheme.•We formed a nonlinear type of preconditioner.•A high efficiency precondition matrix for high-order accurate scheme was formed.•Test cases shown that wall time was saved half with JFNK method. High-order accurate scheme for Computational Flui...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & fluids 2015-03, Vol.110, p.43-47
Hauptverfasser: Liu, Wei, Zhang, Lilun, Zhong, Ying, Wang, Yongxian, Che, Yonggang, Xu, Chuanfu, Cheng, Xinghua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 47
container_issue
container_start_page 43
container_title Computers & fluids
container_volume 110
creator Liu, Wei
Zhang, Lilun
Zhong, Ying
Wang, Yongxian
Che, Yonggang
Xu, Chuanfu
Cheng, Xinghua
description •We applied JFNK method to CFD high-order accurate scheme.•We formed a nonlinear type of preconditioner.•A high efficiency precondition matrix for high-order accurate scheme was formed.•Test cases shown that wall time was saved half with JFNK method. High-order accurate scheme for Computational Fluid Dynamics (CFD) finite difference method can provide more exact flow field solution than second order accurate scheme, but it is hard to get Jacobian matrix for lower–upper symmetric Gauss–Seidel (LU-SGS) method because of its complicated computing stencil, which lead to the poor convergence speed of LU-SGS. A Jacobian-Free Newton–Krylov (JFNK) method of high-order accurate scheme was developed, and a nonlinear type of preconditioner was applied based on traditional 7 diagonals matrix, which was solved with LU-SGS method. In cylinder steady flow case, JFNK method was better than original LU-SGS method, nearly one half wall time was saved.
doi_str_mv 10.1016/j.compfluid.2014.11.019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709722347</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045793014004496</els_id><sourcerecordid>1709722347</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-4d84d5af056baec1ae7dbfbc5deca20885c6361a7b8f36bbcd46dd456fb0058c3</originalsourceid><addsrcrecordid>eNqNkMtOwzAQRS0EEuXxDWTJJsGTOHG6rArlVcEG1pYznhBXSVzstKh_T6oitrAaXencK81h7Ap4AhyKm1WCrlvX7caaJOUgEoCEw_SITaCU05hLIY_ZhHORx3Ka8VN2FsKKjzlLxYTN5ovbqLEfTey8IR9pxI3XA0UBG-ooetLoKqv7eOGJohf6GlwfPftd67ZRR0PjzAU7qXUb6PLnnrP3xd3b_CFevt4_zmfLGPMUhliYUphc1zwvKk0ImqSp6gpzQ6hTXpY5FlkBWlZlnRVVhUYUxoi8qCvO8xKzc3Z92F1797mhMKjOBqS21T25TVAg-VSmaSbkv1AoiwzKEZUHFL0LwVOt1t522u8UcLX3q1bq16_a-1UAavQ7NmeHJo1Pby15FdBSj2SsJxyUcfbPjW84dohF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709186318</pqid></control><display><type>article</type><title>CFD high-order accurate scheme Jacobian-Free Newton Krylov method</title><source>Access via ScienceDirect (Elsevier)</source><creator>Liu, Wei ; Zhang, Lilun ; Zhong, Ying ; Wang, Yongxian ; Che, Yonggang ; Xu, Chuanfu ; Cheng, Xinghua</creator><creatorcontrib>Liu, Wei ; Zhang, Lilun ; Zhong, Ying ; Wang, Yongxian ; Che, Yonggang ; Xu, Chuanfu ; Cheng, Xinghua</creatorcontrib><description>•We applied JFNK method to CFD high-order accurate scheme.•We formed a nonlinear type of preconditioner.•A high efficiency precondition matrix for high-order accurate scheme was formed.•Test cases shown that wall time was saved half with JFNK method. High-order accurate scheme for Computational Fluid Dynamics (CFD) finite difference method can provide more exact flow field solution than second order accurate scheme, but it is hard to get Jacobian matrix for lower–upper symmetric Gauss–Seidel (LU-SGS) method because of its complicated computing stencil, which lead to the poor convergence speed of LU-SGS. A Jacobian-Free Newton–Krylov (JFNK) method of high-order accurate scheme was developed, and a nonlinear type of preconditioner was applied based on traditional 7 diagonals matrix, which was solved with LU-SGS method. In cylinder steady flow case, JFNK method was better than original LU-SGS method, nearly one half wall time was saved.</description><identifier>ISSN: 0045-7930</identifier><identifier>EISSN: 1879-0747</identifier><identifier>DOI: 10.1016/j.compfluid.2014.11.019</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>CFD ; Computational fluid dynamics ; Convergence ; Cylinders ; Finite difference method ; High-order accurate scheme ; Jacobian matrix ; JFNK ; Mathematical analysis ; Mathematical models ; Nonlinear preconditioner ; Walls</subject><ispartof>Computers &amp; fluids, 2015-03, Vol.110, p.43-47</ispartof><rights>2014 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-4d84d5af056baec1ae7dbfbc5deca20885c6361a7b8f36bbcd46dd456fb0058c3</citedby><cites>FETCH-LOGICAL-c521t-4d84d5af056baec1ae7dbfbc5deca20885c6361a7b8f36bbcd46dd456fb0058c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compfluid.2014.11.019$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Zhang, Lilun</creatorcontrib><creatorcontrib>Zhong, Ying</creatorcontrib><creatorcontrib>Wang, Yongxian</creatorcontrib><creatorcontrib>Che, Yonggang</creatorcontrib><creatorcontrib>Xu, Chuanfu</creatorcontrib><creatorcontrib>Cheng, Xinghua</creatorcontrib><title>CFD high-order accurate scheme Jacobian-Free Newton Krylov method</title><title>Computers &amp; fluids</title><description>•We applied JFNK method to CFD high-order accurate scheme.•We formed a nonlinear type of preconditioner.•A high efficiency precondition matrix for high-order accurate scheme was formed.•Test cases shown that wall time was saved half with JFNK method. High-order accurate scheme for Computational Fluid Dynamics (CFD) finite difference method can provide more exact flow field solution than second order accurate scheme, but it is hard to get Jacobian matrix for lower–upper symmetric Gauss–Seidel (LU-SGS) method because of its complicated computing stencil, which lead to the poor convergence speed of LU-SGS. A Jacobian-Free Newton–Krylov (JFNK) method of high-order accurate scheme was developed, and a nonlinear type of preconditioner was applied based on traditional 7 diagonals matrix, which was solved with LU-SGS method. In cylinder steady flow case, JFNK method was better than original LU-SGS method, nearly one half wall time was saved.</description><subject>CFD</subject><subject>Computational fluid dynamics</subject><subject>Convergence</subject><subject>Cylinders</subject><subject>Finite difference method</subject><subject>High-order accurate scheme</subject><subject>Jacobian matrix</subject><subject>JFNK</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonlinear preconditioner</subject><subject>Walls</subject><issn>0045-7930</issn><issn>1879-0747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkMtOwzAQRS0EEuXxDWTJJsGTOHG6rArlVcEG1pYznhBXSVzstKh_T6oitrAaXencK81h7Ap4AhyKm1WCrlvX7caaJOUgEoCEw_SITaCU05hLIY_ZhHORx3Ka8VN2FsKKjzlLxYTN5ovbqLEfTey8IR9pxI3XA0UBG-ooetLoKqv7eOGJohf6GlwfPftd67ZRR0PjzAU7qXUb6PLnnrP3xd3b_CFevt4_zmfLGPMUhliYUphc1zwvKk0ImqSp6gpzQ6hTXpY5FlkBWlZlnRVVhUYUxoi8qCvO8xKzc3Z92F1797mhMKjOBqS21T25TVAg-VSmaSbkv1AoiwzKEZUHFL0LwVOt1t522u8UcLX3q1bq16_a-1UAavQ7NmeHJo1Pby15FdBSj2SsJxyUcfbPjW84dohF</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Liu, Wei</creator><creator>Zhang, Lilun</creator><creator>Zhong, Ying</creator><creator>Wang, Yongxian</creator><creator>Che, Yonggang</creator><creator>Xu, Chuanfu</creator><creator>Cheng, Xinghua</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150301</creationdate><title>CFD high-order accurate scheme Jacobian-Free Newton Krylov method</title><author>Liu, Wei ; Zhang, Lilun ; Zhong, Ying ; Wang, Yongxian ; Che, Yonggang ; Xu, Chuanfu ; Cheng, Xinghua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-4d84d5af056baec1ae7dbfbc5deca20885c6361a7b8f36bbcd46dd456fb0058c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>CFD</topic><topic>Computational fluid dynamics</topic><topic>Convergence</topic><topic>Cylinders</topic><topic>Finite difference method</topic><topic>High-order accurate scheme</topic><topic>Jacobian matrix</topic><topic>JFNK</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonlinear preconditioner</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Zhang, Lilun</creatorcontrib><creatorcontrib>Zhong, Ying</creatorcontrib><creatorcontrib>Wang, Yongxian</creatorcontrib><creatorcontrib>Che, Yonggang</creatorcontrib><creatorcontrib>Xu, Chuanfu</creatorcontrib><creatorcontrib>Cheng, Xinghua</creatorcontrib><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Wei</au><au>Zhang, Lilun</au><au>Zhong, Ying</au><au>Wang, Yongxian</au><au>Che, Yonggang</au><au>Xu, Chuanfu</au><au>Cheng, Xinghua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CFD high-order accurate scheme Jacobian-Free Newton Krylov method</atitle><jtitle>Computers &amp; fluids</jtitle><date>2015-03-01</date><risdate>2015</risdate><volume>110</volume><spage>43</spage><epage>47</epage><pages>43-47</pages><issn>0045-7930</issn><eissn>1879-0747</eissn><abstract>•We applied JFNK method to CFD high-order accurate scheme.•We formed a nonlinear type of preconditioner.•A high efficiency precondition matrix for high-order accurate scheme was formed.•Test cases shown that wall time was saved half with JFNK method. High-order accurate scheme for Computational Fluid Dynamics (CFD) finite difference method can provide more exact flow field solution than second order accurate scheme, but it is hard to get Jacobian matrix for lower–upper symmetric Gauss–Seidel (LU-SGS) method because of its complicated computing stencil, which lead to the poor convergence speed of LU-SGS. A Jacobian-Free Newton–Krylov (JFNK) method of high-order accurate scheme was developed, and a nonlinear type of preconditioner was applied based on traditional 7 diagonals matrix, which was solved with LU-SGS method. In cylinder steady flow case, JFNK method was better than original LU-SGS method, nearly one half wall time was saved.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compfluid.2014.11.019</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0045-7930
ispartof Computers & fluids, 2015-03, Vol.110, p.43-47
issn 0045-7930
1879-0747
language eng
recordid cdi_proquest_miscellaneous_1709722347
source Access via ScienceDirect (Elsevier)
subjects CFD
Computational fluid dynamics
Convergence
Cylinders
Finite difference method
High-order accurate scheme
Jacobian matrix
JFNK
Mathematical analysis
Mathematical models
Nonlinear preconditioner
Walls
title CFD high-order accurate scheme Jacobian-Free Newton Krylov method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A10%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CFD%20high-order%20accurate%20scheme%20Jacobian-Free%20Newton%20Krylov%20method&rft.jtitle=Computers%20&%20fluids&rft.au=Liu,%20Wei&rft.date=2015-03-01&rft.volume=110&rft.spage=43&rft.epage=47&rft.pages=43-47&rft.issn=0045-7930&rft.eissn=1879-0747&rft_id=info:doi/10.1016/j.compfluid.2014.11.019&rft_dat=%3Cproquest_cross%3E1709722347%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1709186318&rft_id=info:pmid/&rft_els_id=S0045793014004496&rfr_iscdi=true