Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease

During renal fibrosis, epithelial cells undergo a partial epithelial-to-mesenchymal transition that can be targeted to reverse established disease. Progressive kidney fibrosis contributes greatly to end-stage renal failure, and no specific treatment is available to preserve organ function. During re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature medicine 2015-09, Vol.21 (9), p.989-997
Hauptverfasser: Grande, M Teresa, Sánchez-Laorden, Berta, López-Blau, Cristina, De Frutos, Cristina A, Boutet, Agnès, Arévalo, Miguel, Rowe, R Grant, Weiss, Stephen J, López-Novoa, José M, Nieto, M Angela
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:During renal fibrosis, epithelial cells undergo a partial epithelial-to-mesenchymal transition that can be targeted to reverse established disease. Progressive kidney fibrosis contributes greatly to end-stage renal failure, and no specific treatment is available to preserve organ function. During renal fibrosis, myofibroblasts accumulate in the interstitium of the kidney, leading to massive deposition of extracellular matrix and organ dysfunction. The origin of myofibroblasts is manifold, but the contribution of an epithelial-to-mesenchymal transition (EMT) undergone by renal epithelial cells during kidney fibrosis is still debated. We show that the reactivation of Snai1 (encoding snail family zinc finger 1, known as Snail1) in mouse renal epithelial cells is required for the development of fibrosis in the kidney. Damage-mediated Snail1 reactivation induces a partial EMT in tubular epithelial cells that, without directly contributing to the myofibroblast population, relays signals to the interstitium to promote myofibroblast differentiation and fibrogenesis and to sustain inflammation. We also show that Snail1-induced fibrosis can be reversed in vivo and that obstructive nephropathy can be therapeutically ameliorated in mice by targeting Snail1 expression. These results reconcile conflicting data on the role of the EMT in renal fibrosis and provide avenues for the design of novel anti-fibrotic therapies.
ISSN:1078-8956
1546-170X
DOI:10.1038/nm.3901