Molecular Catalysis of the Electrochemical and Photochemical Reduction of CO2 with Earth-Abundant Metal Complexes. Selective Production of CO vs HCOOH by Switching of the Metal Center
Molecular catalysis of carbon dioxide reduction using earth-abundant metal complexes as catalysts is a key challenge related to the production of useful productsthe “solar fuels”in which solar energy would be stored. A direct approach using sunlight energy as well as an indirect approach where sun...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2015-09, Vol.137 (34), p.10918-10921 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10921 |
---|---|
container_issue | 34 |
container_start_page | 10918 |
container_title | Journal of the American Chemical Society |
container_volume | 137 |
creator | Chen, Lingjing Guo, Zhenguo Wei, Xi-Guang Gallenkamp, Charlotte Bonin, Julien Anxolabéhère-Mallart, Elodie Lau, Kai-Chung Lau, Tai-Chu Robert, Marc |
description | Molecular catalysis of carbon dioxide reduction using earth-abundant metal complexes as catalysts is a key challenge related to the production of useful productsthe “solar fuels”in which solar energy would be stored. A direct approach using sunlight energy as well as an indirect approach where sunlight is first converted into electricity could be used. A CoII complex and a FeIII complex, both bearing the same pentadentate N5 ligand (2,13-dimethyl-3,6,9,12,18-pentaazabicyclo[12.3.1]octadeca-1(18),2,12,14,16-pentaene), were synthesized, and their catalytic activity toward CO2 reduction was investigated. Carbon monoxide was formed with the cobalt complex, while formic acid was obtained with the iron-based catalyst, thus showing that the catalysis product can be switched by changing the metal center. Selective CO2 reduction occurs under electrochemical conditions as well as photochemical conditions when using a photosensitizer under visible light excitation (λ > 460 nm, solvent acetonitrile) with the Co catalyst. In the case of the Fe catalyst, selective HCOOH production occurs at low overpotential. Sustained catalytic activity over long periods of time and high turnover numbers were observed in both cases. A catalytic mechanism is suggested on the basis of experimental results and preliminary quantum chemistry calculations. |
doi_str_mv | 10.1021/jacs.5b06535 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709396412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1709396412</sourcerecordid><originalsourceid>FETCH-LOGICAL-a244t-eb7eb96d2be8c8ac2864a0ac8d468f3fe5dc7c05c75f8b775e869266d5c69c9a3</originalsourceid><addsrcrecordid>eNpVkctOwzAQRS0EgvLYsUZeskmxndhxligqFAlUxGNtOc6EpEriYjuFfhm_RyqKEKvRzNw5upqL0DklU0oYvVpq46e8IILHfA9NKGck4pSJfTQhhLAolSI-QsfeL8c2YZIeoiMmmEgJFRP09WBbMEOrHc510O3GNx7bCoca8GzcBGdNDV1jdIt1X-LH2oa_yROUgwmN7bcn-YLhjybUeKZdqKPrYuhL3Qf8ACMX57ZbtfAJfoqfYQtu1oAfnf0HwGuP5_liMcfFBj-PMFM3_duvnx0I-gDuFB1UuvVwtqsn6PVm9pLPo_vF7V1-fR9pliQhgiKFIhMlK0AaqQ2TItFEG1kmQlZxBbw0qSHcpLySRZpykCJjQpTciMxkOj5Blz_clbPvA_igusYbaFvdgx28oinJ4kwklI3Si510KDoo1co1nXYb9fvsP9aYmFrawfWjc0WJ2uaotjmqXY7xN8cIkHI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709396412</pqid></control><display><type>article</type><title>Molecular Catalysis of the Electrochemical and Photochemical Reduction of CO2 with Earth-Abundant Metal Complexes. Selective Production of CO vs HCOOH by Switching of the Metal Center</title><source>American Chemical Society Journals</source><creator>Chen, Lingjing ; Guo, Zhenguo ; Wei, Xi-Guang ; Gallenkamp, Charlotte ; Bonin, Julien ; Anxolabéhère-Mallart, Elodie ; Lau, Kai-Chung ; Lau, Tai-Chu ; Robert, Marc</creator><creatorcontrib>Chen, Lingjing ; Guo, Zhenguo ; Wei, Xi-Guang ; Gallenkamp, Charlotte ; Bonin, Julien ; Anxolabéhère-Mallart, Elodie ; Lau, Kai-Chung ; Lau, Tai-Chu ; Robert, Marc</creatorcontrib><description>Molecular catalysis of carbon dioxide reduction using earth-abundant metal complexes as catalysts is a key challenge related to the production of useful productsthe “solar fuels”in which solar energy would be stored. A direct approach using sunlight energy as well as an indirect approach where sunlight is first converted into electricity could be used. A CoII complex and a FeIII complex, both bearing the same pentadentate N5 ligand (2,13-dimethyl-3,6,9,12,18-pentaazabicyclo[12.3.1]octadeca-1(18),2,12,14,16-pentaene), were synthesized, and their catalytic activity toward CO2 reduction was investigated. Carbon monoxide was formed with the cobalt complex, while formic acid was obtained with the iron-based catalyst, thus showing that the catalysis product can be switched by changing the metal center. Selective CO2 reduction occurs under electrochemical conditions as well as photochemical conditions when using a photosensitizer under visible light excitation (λ > 460 nm, solvent acetonitrile) with the Co catalyst. In the case of the Fe catalyst, selective HCOOH production occurs at low overpotential. Sustained catalytic activity over long periods of time and high turnover numbers were observed in both cases. A catalytic mechanism is suggested on the basis of experimental results and preliminary quantum chemistry calculations.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.5b06535</identifier><identifier>PMID: 26267016</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2015-09, Vol.137 (34), p.10918-10921</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.5b06535$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.5b06535$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26267016$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Lingjing</creatorcontrib><creatorcontrib>Guo, Zhenguo</creatorcontrib><creatorcontrib>Wei, Xi-Guang</creatorcontrib><creatorcontrib>Gallenkamp, Charlotte</creatorcontrib><creatorcontrib>Bonin, Julien</creatorcontrib><creatorcontrib>Anxolabéhère-Mallart, Elodie</creatorcontrib><creatorcontrib>Lau, Kai-Chung</creatorcontrib><creatorcontrib>Lau, Tai-Chu</creatorcontrib><creatorcontrib>Robert, Marc</creatorcontrib><title>Molecular Catalysis of the Electrochemical and Photochemical Reduction of CO2 with Earth-Abundant Metal Complexes. Selective Production of CO vs HCOOH by Switching of the Metal Center</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Molecular catalysis of carbon dioxide reduction using earth-abundant metal complexes as catalysts is a key challenge related to the production of useful productsthe “solar fuels”in which solar energy would be stored. A direct approach using sunlight energy as well as an indirect approach where sunlight is first converted into electricity could be used. A CoII complex and a FeIII complex, both bearing the same pentadentate N5 ligand (2,13-dimethyl-3,6,9,12,18-pentaazabicyclo[12.3.1]octadeca-1(18),2,12,14,16-pentaene), were synthesized, and their catalytic activity toward CO2 reduction was investigated. Carbon monoxide was formed with the cobalt complex, while formic acid was obtained with the iron-based catalyst, thus showing that the catalysis product can be switched by changing the metal center. Selective CO2 reduction occurs under electrochemical conditions as well as photochemical conditions when using a photosensitizer under visible light excitation (λ > 460 nm, solvent acetonitrile) with the Co catalyst. In the case of the Fe catalyst, selective HCOOH production occurs at low overpotential. Sustained catalytic activity over long periods of time and high turnover numbers were observed in both cases. A catalytic mechanism is suggested on the basis of experimental results and preliminary quantum chemistry calculations.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpVkctOwzAQRS0EgvLYsUZeskmxndhxligqFAlUxGNtOc6EpEriYjuFfhm_RyqKEKvRzNw5upqL0DklU0oYvVpq46e8IILHfA9NKGck4pSJfTQhhLAolSI-QsfeL8c2YZIeoiMmmEgJFRP09WBbMEOrHc510O3GNx7bCoca8GzcBGdNDV1jdIt1X-LH2oa_yROUgwmN7bcn-YLhjybUeKZdqKPrYuhL3Qf8ACMX57ZbtfAJfoqfYQtu1oAfnf0HwGuP5_liMcfFBj-PMFM3_duvnx0I-gDuFB1UuvVwtqsn6PVm9pLPo_vF7V1-fR9pliQhgiKFIhMlK0AaqQ2TItFEG1kmQlZxBbw0qSHcpLySRZpykCJjQpTciMxkOj5Blz_clbPvA_igusYbaFvdgx28oinJ4kwklI3Si510KDoo1co1nXYb9fvsP9aYmFrawfWjc0WJ2uaotjmqXY7xN8cIkHI</recordid><startdate>20150902</startdate><enddate>20150902</enddate><creator>Chen, Lingjing</creator><creator>Guo, Zhenguo</creator><creator>Wei, Xi-Guang</creator><creator>Gallenkamp, Charlotte</creator><creator>Bonin, Julien</creator><creator>Anxolabéhère-Mallart, Elodie</creator><creator>Lau, Kai-Chung</creator><creator>Lau, Tai-Chu</creator><creator>Robert, Marc</creator><general>American Chemical Society</general><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20150902</creationdate><title>Molecular Catalysis of the Electrochemical and Photochemical Reduction of CO2 with Earth-Abundant Metal Complexes. Selective Production of CO vs HCOOH by Switching of the Metal Center</title><author>Chen, Lingjing ; Guo, Zhenguo ; Wei, Xi-Guang ; Gallenkamp, Charlotte ; Bonin, Julien ; Anxolabéhère-Mallart, Elodie ; Lau, Kai-Chung ; Lau, Tai-Chu ; Robert, Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a244t-eb7eb96d2be8c8ac2864a0ac8d468f3fe5dc7c05c75f8b775e869266d5c69c9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Lingjing</creatorcontrib><creatorcontrib>Guo, Zhenguo</creatorcontrib><creatorcontrib>Wei, Xi-Guang</creatorcontrib><creatorcontrib>Gallenkamp, Charlotte</creatorcontrib><creatorcontrib>Bonin, Julien</creatorcontrib><creatorcontrib>Anxolabéhère-Mallart, Elodie</creatorcontrib><creatorcontrib>Lau, Kai-Chung</creatorcontrib><creatorcontrib>Lau, Tai-Chu</creatorcontrib><creatorcontrib>Robert, Marc</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Lingjing</au><au>Guo, Zhenguo</au><au>Wei, Xi-Guang</au><au>Gallenkamp, Charlotte</au><au>Bonin, Julien</au><au>Anxolabéhère-Mallart, Elodie</au><au>Lau, Kai-Chung</au><au>Lau, Tai-Chu</au><au>Robert, Marc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Catalysis of the Electrochemical and Photochemical Reduction of CO2 with Earth-Abundant Metal Complexes. Selective Production of CO vs HCOOH by Switching of the Metal Center</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2015-09-02</date><risdate>2015</risdate><volume>137</volume><issue>34</issue><spage>10918</spage><epage>10921</epage><pages>10918-10921</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Molecular catalysis of carbon dioxide reduction using earth-abundant metal complexes as catalysts is a key challenge related to the production of useful productsthe “solar fuels”in which solar energy would be stored. A direct approach using sunlight energy as well as an indirect approach where sunlight is first converted into electricity could be used. A CoII complex and a FeIII complex, both bearing the same pentadentate N5 ligand (2,13-dimethyl-3,6,9,12,18-pentaazabicyclo[12.3.1]octadeca-1(18),2,12,14,16-pentaene), were synthesized, and their catalytic activity toward CO2 reduction was investigated. Carbon monoxide was formed with the cobalt complex, while formic acid was obtained with the iron-based catalyst, thus showing that the catalysis product can be switched by changing the metal center. Selective CO2 reduction occurs under electrochemical conditions as well as photochemical conditions when using a photosensitizer under visible light excitation (λ > 460 nm, solvent acetonitrile) with the Co catalyst. In the case of the Fe catalyst, selective HCOOH production occurs at low overpotential. Sustained catalytic activity over long periods of time and high turnover numbers were observed in both cases. A catalytic mechanism is suggested on the basis of experimental results and preliminary quantum chemistry calculations.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26267016</pmid><doi>10.1021/jacs.5b06535</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2015-09, Vol.137 (34), p.10918-10921 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_proquest_miscellaneous_1709396412 |
source | American Chemical Society Journals |
title | Molecular Catalysis of the Electrochemical and Photochemical Reduction of CO2 with Earth-Abundant Metal Complexes. Selective Production of CO vs HCOOH by Switching of the Metal Center |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A48%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Catalysis%20of%20the%20Electrochemical%20and%20Photochemical%20Reduction%20of%20CO2%20with%20Earth-Abundant%20Metal%20Complexes.%20Selective%20Production%20of%20CO%20vs%20HCOOH%20by%20Switching%20of%20the%20Metal%20Center&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Chen,%20Lingjing&rft.date=2015-09-02&rft.volume=137&rft.issue=34&rft.spage=10918&rft.epage=10921&rft.pages=10918-10921&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.5b06535&rft_dat=%3Cproquest_pubme%3E1709396412%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1709396412&rft_id=info:pmid/26267016&rfr_iscdi=true |