Identification of multiple cellular uptake pathways of polystyrene nanoparticles and factors affecting the uptake: Relevance for drug delivery systems

The given type of polystyrene nanoparticles is taken up by bone marrow-derived macrophages via multiple distinct endocytic pathways simultaneously. Nanoparticles may address challenges by human diseases through improving diagnosis, vaccination and treatment. The uptake mechanism regulates the type o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of cell biology 2014-08, Vol.93 (8-9), p.323-337
Hauptverfasser: Firdessa, Rebuma, Oelschlaeger, Tobias A., Moll, Heidrun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 337
container_issue 8-9
container_start_page 323
container_title European journal of cell biology
container_volume 93
creator Firdessa, Rebuma
Oelschlaeger, Tobias A.
Moll, Heidrun
description The given type of polystyrene nanoparticles is taken up by bone marrow-derived macrophages via multiple distinct endocytic pathways simultaneously. Nanoparticles may address challenges by human diseases through improving diagnosis, vaccination and treatment. The uptake mechanism regulates the type of threat a particle poses on the host cells and how a cell responds to it. Hence, understanding the uptake mechanisms and cellular interactions of nanoparticles at the cellular and subcellular level is a prerequisite for their effective biomedical applications. The present study shows the uptake mechanisms of polystyrene nanoparticles and factors affecting their uptake in bone marrow-derived macrophages, 293T kidney epithelial cells and L929 fibroblasts. Labeling with the endocytic marker FM4-64 and transmission electron microscopy studies show that the nanoparticles were internalized rapidly via endocytosis and accumulated in intracellular vesicles. Soon after their internalizations, nanoparticles trafficked to organelles with acidic pH. Analysis of the ultrastructural morphology of the plasma membrane invaginations or extravasations provides clear evidence for the involvement of several uptake routes in parallel to internalize a given type of nanoparticles by mammalian cells, highlighting the complexity of the nanoparticle–cell interactions. Blocking the specific endocytic pathways by different pharmacological inhibitors shows similar outcomes. The potential to take up nanoparticles varies highly among different cell types in a particle sizes-, time- and energy-dependent manner. Furthermore, infection and the activation status of bone marrow-derived macrophages significantly affect the uptake potential of the cells, indicating the need to understand the diseases’ pathogenesis to establish effective and rational drug-delivery systems. This study enhances our understanding of the application of nanotechnology in biomedical sciences.
doi_str_mv 10.1016/j.ejcb.2014.08.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709185418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S017193351400106X</els_id><sourcerecordid>1566824977</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-6995212e762a2d931b4d2fe829335394aa6f75c869a9ee676758fa2e76ff73d93</originalsourceid><addsrcrecordid>eNqFkcGO1SAYhYnRONfRF3BhWLppBdpSMG7MRJ1JJjExuiZc-jPDlZYK9E76Ij6vNPc6S13B4jsn-c-H0GtKakoof3eo4WD2NSO0rYmoCaFP0I5yKirKpHiKdoT2tJJN012gFykdCtAJKZ-jC9Yx1jac7dDvmwGm7KwzOrsw4WDxuPjsZg_YgPeL1xEvc9Y_Ac863z_oNW3QHPya8hphAjzpKcw6Zmc8JKynAVttcojlby2Y7KY7nO_hXPMefwMPRz0ZwDZEPMTlDg_g3RHiilNphTG9RM-s9glend9L9OPzp-9X19Xt1y83Vx9vK9N2Mldcyo5RBj1nmg2yoft2YBYE245uZKs1t31nBJdaAvCe952weuOt7ZsSuERvT71zDL8WSFmNLm136wnCkhTtiaSia6n4P9pxLlgr-76g7ISaGFKKYNUc3ajjqihRmzp1UJs6talTRKhipoTenPuX_QjDY-SvqwJ8OAFQBjk6iCoZB2XGwcWyshqC-1f_H4sCrV8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1566824977</pqid></control><display><type>article</type><title>Identification of multiple cellular uptake pathways of polystyrene nanoparticles and factors affecting the uptake: Relevance for drug delivery systems</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Firdessa, Rebuma ; Oelschlaeger, Tobias A. ; Moll, Heidrun</creator><creatorcontrib>Firdessa, Rebuma ; Oelschlaeger, Tobias A. ; Moll, Heidrun</creatorcontrib><description>The given type of polystyrene nanoparticles is taken up by bone marrow-derived macrophages via multiple distinct endocytic pathways simultaneously. Nanoparticles may address challenges by human diseases through improving diagnosis, vaccination and treatment. The uptake mechanism regulates the type of threat a particle poses on the host cells and how a cell responds to it. Hence, understanding the uptake mechanisms and cellular interactions of nanoparticles at the cellular and subcellular level is a prerequisite for their effective biomedical applications. The present study shows the uptake mechanisms of polystyrene nanoparticles and factors affecting their uptake in bone marrow-derived macrophages, 293T kidney epithelial cells and L929 fibroblasts. Labeling with the endocytic marker FM4-64 and transmission electron microscopy studies show that the nanoparticles were internalized rapidly via endocytosis and accumulated in intracellular vesicles. Soon after their internalizations, nanoparticles trafficked to organelles with acidic pH. Analysis of the ultrastructural morphology of the plasma membrane invaginations or extravasations provides clear evidence for the involvement of several uptake routes in parallel to internalize a given type of nanoparticles by mammalian cells, highlighting the complexity of the nanoparticle–cell interactions. Blocking the specific endocytic pathways by different pharmacological inhibitors shows similar outcomes. The potential to take up nanoparticles varies highly among different cell types in a particle sizes-, time- and energy-dependent manner. Furthermore, infection and the activation status of bone marrow-derived macrophages significantly affect the uptake potential of the cells, indicating the need to understand the diseases’ pathogenesis to establish effective and rational drug-delivery systems. This study enhances our understanding of the application of nanotechnology in biomedical sciences.</description><identifier>ISSN: 0171-9335</identifier><identifier>EISSN: 1618-1298</identifier><identifier>DOI: 10.1016/j.ejcb.2014.08.001</identifier><identifier>PMID: 25224362</identifier><language>eng</language><publisher>Germany: Elsevier GmbH</publisher><subject>Animals ; Cell Membrane - metabolism ; Cell Membrane - ultrastructure ; Cells, Cultured ; Drug Delivery Systems ; Endocytosis ; Endosomes - metabolism ; Endosomes - ultrastructure ; Epithelial Cells - metabolism ; Factor determining uptake ; Female ; Fibroblasts - metabolism ; Fluorescent Dyes - metabolism ; Hydrogen-Ion Concentration ; Kidney - cytology ; Kidney - metabolism ; Leishmania major ; Macrophages - metabolism ; Macrophages - parasitology ; Mice, Inbred BALB C ; Microscopy, Electron, Transmission ; Multiple uptake ; Nanoparticle ; Nanoparticles - metabolism ; Particle Size ; Polystyrenes - metabolism ; Pyridinium Compounds - metabolism ; Quaternary Ammonium Compounds - metabolism ; Time Factors ; Transcytosis ; Ultrastructure</subject><ispartof>European journal of cell biology, 2014-08, Vol.93 (8-9), p.323-337</ispartof><rights>2014 Elsevier GmbH</rights><rights>Copyright © 2014 Elsevier GmbH. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-6995212e762a2d931b4d2fe829335394aa6f75c869a9ee676758fa2e76ff73d93</citedby><cites>FETCH-LOGICAL-c459t-6995212e762a2d931b4d2fe829335394aa6f75c869a9ee676758fa2e76ff73d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ejcb.2014.08.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25224362$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Firdessa, Rebuma</creatorcontrib><creatorcontrib>Oelschlaeger, Tobias A.</creatorcontrib><creatorcontrib>Moll, Heidrun</creatorcontrib><title>Identification of multiple cellular uptake pathways of polystyrene nanoparticles and factors affecting the uptake: Relevance for drug delivery systems</title><title>European journal of cell biology</title><addtitle>Eur J Cell Biol</addtitle><description>The given type of polystyrene nanoparticles is taken up by bone marrow-derived macrophages via multiple distinct endocytic pathways simultaneously. Nanoparticles may address challenges by human diseases through improving diagnosis, vaccination and treatment. The uptake mechanism regulates the type of threat a particle poses on the host cells and how a cell responds to it. Hence, understanding the uptake mechanisms and cellular interactions of nanoparticles at the cellular and subcellular level is a prerequisite for their effective biomedical applications. The present study shows the uptake mechanisms of polystyrene nanoparticles and factors affecting their uptake in bone marrow-derived macrophages, 293T kidney epithelial cells and L929 fibroblasts. Labeling with the endocytic marker FM4-64 and transmission electron microscopy studies show that the nanoparticles were internalized rapidly via endocytosis and accumulated in intracellular vesicles. Soon after their internalizations, nanoparticles trafficked to organelles with acidic pH. Analysis of the ultrastructural morphology of the plasma membrane invaginations or extravasations provides clear evidence for the involvement of several uptake routes in parallel to internalize a given type of nanoparticles by mammalian cells, highlighting the complexity of the nanoparticle–cell interactions. Blocking the specific endocytic pathways by different pharmacological inhibitors shows similar outcomes. The potential to take up nanoparticles varies highly among different cell types in a particle sizes-, time- and energy-dependent manner. Furthermore, infection and the activation status of bone marrow-derived macrophages significantly affect the uptake potential of the cells, indicating the need to understand the diseases’ pathogenesis to establish effective and rational drug-delivery systems. This study enhances our understanding of the application of nanotechnology in biomedical sciences.</description><subject>Animals</subject><subject>Cell Membrane - metabolism</subject><subject>Cell Membrane - ultrastructure</subject><subject>Cells, Cultured</subject><subject>Drug Delivery Systems</subject><subject>Endocytosis</subject><subject>Endosomes - metabolism</subject><subject>Endosomes - ultrastructure</subject><subject>Epithelial Cells - metabolism</subject><subject>Factor determining uptake</subject><subject>Female</subject><subject>Fibroblasts - metabolism</subject><subject>Fluorescent Dyes - metabolism</subject><subject>Hydrogen-Ion Concentration</subject><subject>Kidney - cytology</subject><subject>Kidney - metabolism</subject><subject>Leishmania major</subject><subject>Macrophages - metabolism</subject><subject>Macrophages - parasitology</subject><subject>Mice, Inbred BALB C</subject><subject>Microscopy, Electron, Transmission</subject><subject>Multiple uptake</subject><subject>Nanoparticle</subject><subject>Nanoparticles - metabolism</subject><subject>Particle Size</subject><subject>Polystyrenes - metabolism</subject><subject>Pyridinium Compounds - metabolism</subject><subject>Quaternary Ammonium Compounds - metabolism</subject><subject>Time Factors</subject><subject>Transcytosis</subject><subject>Ultrastructure</subject><issn>0171-9335</issn><issn>1618-1298</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcGO1SAYhYnRONfRF3BhWLppBdpSMG7MRJ1JJjExuiZc-jPDlZYK9E76Ij6vNPc6S13B4jsn-c-H0GtKakoof3eo4WD2NSO0rYmoCaFP0I5yKirKpHiKdoT2tJJN012gFykdCtAJKZ-jC9Yx1jac7dDvmwGm7KwzOrsw4WDxuPjsZg_YgPeL1xEvc9Y_Ac863z_oNW3QHPya8hphAjzpKcw6Zmc8JKynAVttcojlby2Y7KY7nO_hXPMefwMPRz0ZwDZEPMTlDg_g3RHiilNphTG9RM-s9glend9L9OPzp-9X19Xt1y83Vx9vK9N2Mldcyo5RBj1nmg2yoft2YBYE245uZKs1t31nBJdaAvCe952weuOt7ZsSuERvT71zDL8WSFmNLm136wnCkhTtiaSia6n4P9pxLlgr-76g7ISaGFKKYNUc3ajjqihRmzp1UJs6talTRKhipoTenPuX_QjDY-SvqwJ8OAFQBjk6iCoZB2XGwcWyshqC-1f_H4sCrV8</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Firdessa, Rebuma</creator><creator>Oelschlaeger, Tobias A.</creator><creator>Moll, Heidrun</creator><general>Elsevier GmbH</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20140801</creationdate><title>Identification of multiple cellular uptake pathways of polystyrene nanoparticles and factors affecting the uptake: Relevance for drug delivery systems</title><author>Firdessa, Rebuma ; Oelschlaeger, Tobias A. ; Moll, Heidrun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-6995212e762a2d931b4d2fe829335394aa6f75c869a9ee676758fa2e76ff73d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Cell Membrane - metabolism</topic><topic>Cell Membrane - ultrastructure</topic><topic>Cells, Cultured</topic><topic>Drug Delivery Systems</topic><topic>Endocytosis</topic><topic>Endosomes - metabolism</topic><topic>Endosomes - ultrastructure</topic><topic>Epithelial Cells - metabolism</topic><topic>Factor determining uptake</topic><topic>Female</topic><topic>Fibroblasts - metabolism</topic><topic>Fluorescent Dyes - metabolism</topic><topic>Hydrogen-Ion Concentration</topic><topic>Kidney - cytology</topic><topic>Kidney - metabolism</topic><topic>Leishmania major</topic><topic>Macrophages - metabolism</topic><topic>Macrophages - parasitology</topic><topic>Mice, Inbred BALB C</topic><topic>Microscopy, Electron, Transmission</topic><topic>Multiple uptake</topic><topic>Nanoparticle</topic><topic>Nanoparticles - metabolism</topic><topic>Particle Size</topic><topic>Polystyrenes - metabolism</topic><topic>Pyridinium Compounds - metabolism</topic><topic>Quaternary Ammonium Compounds - metabolism</topic><topic>Time Factors</topic><topic>Transcytosis</topic><topic>Ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Firdessa, Rebuma</creatorcontrib><creatorcontrib>Oelschlaeger, Tobias A.</creatorcontrib><creatorcontrib>Moll, Heidrun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>European journal of cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Firdessa, Rebuma</au><au>Oelschlaeger, Tobias A.</au><au>Moll, Heidrun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of multiple cellular uptake pathways of polystyrene nanoparticles and factors affecting the uptake: Relevance for drug delivery systems</atitle><jtitle>European journal of cell biology</jtitle><addtitle>Eur J Cell Biol</addtitle><date>2014-08-01</date><risdate>2014</risdate><volume>93</volume><issue>8-9</issue><spage>323</spage><epage>337</epage><pages>323-337</pages><issn>0171-9335</issn><eissn>1618-1298</eissn><abstract>The given type of polystyrene nanoparticles is taken up by bone marrow-derived macrophages via multiple distinct endocytic pathways simultaneously. Nanoparticles may address challenges by human diseases through improving diagnosis, vaccination and treatment. The uptake mechanism regulates the type of threat a particle poses on the host cells and how a cell responds to it. Hence, understanding the uptake mechanisms and cellular interactions of nanoparticles at the cellular and subcellular level is a prerequisite for their effective biomedical applications. The present study shows the uptake mechanisms of polystyrene nanoparticles and factors affecting their uptake in bone marrow-derived macrophages, 293T kidney epithelial cells and L929 fibroblasts. Labeling with the endocytic marker FM4-64 and transmission electron microscopy studies show that the nanoparticles were internalized rapidly via endocytosis and accumulated in intracellular vesicles. Soon after their internalizations, nanoparticles trafficked to organelles with acidic pH. Analysis of the ultrastructural morphology of the plasma membrane invaginations or extravasations provides clear evidence for the involvement of several uptake routes in parallel to internalize a given type of nanoparticles by mammalian cells, highlighting the complexity of the nanoparticle–cell interactions. Blocking the specific endocytic pathways by different pharmacological inhibitors shows similar outcomes. The potential to take up nanoparticles varies highly among different cell types in a particle sizes-, time- and energy-dependent manner. Furthermore, infection and the activation status of bone marrow-derived macrophages significantly affect the uptake potential of the cells, indicating the need to understand the diseases’ pathogenesis to establish effective and rational drug-delivery systems. This study enhances our understanding of the application of nanotechnology in biomedical sciences.</abstract><cop>Germany</cop><pub>Elsevier GmbH</pub><pmid>25224362</pmid><doi>10.1016/j.ejcb.2014.08.001</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0171-9335
ispartof European journal of cell biology, 2014-08, Vol.93 (8-9), p.323-337
issn 0171-9335
1618-1298
language eng
recordid cdi_proquest_miscellaneous_1709185418
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Animals
Cell Membrane - metabolism
Cell Membrane - ultrastructure
Cells, Cultured
Drug Delivery Systems
Endocytosis
Endosomes - metabolism
Endosomes - ultrastructure
Epithelial Cells - metabolism
Factor determining uptake
Female
Fibroblasts - metabolism
Fluorescent Dyes - metabolism
Hydrogen-Ion Concentration
Kidney - cytology
Kidney - metabolism
Leishmania major
Macrophages - metabolism
Macrophages - parasitology
Mice, Inbred BALB C
Microscopy, Electron, Transmission
Multiple uptake
Nanoparticle
Nanoparticles - metabolism
Particle Size
Polystyrenes - metabolism
Pyridinium Compounds - metabolism
Quaternary Ammonium Compounds - metabolism
Time Factors
Transcytosis
Ultrastructure
title Identification of multiple cellular uptake pathways of polystyrene nanoparticles and factors affecting the uptake: Relevance for drug delivery systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T20%3A15%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20multiple%20cellular%20uptake%20pathways%20of%20polystyrene%20nanoparticles%20and%20factors%20affecting%20the%20uptake:%20Relevance%20for%20drug%20delivery%20systems&rft.jtitle=European%20journal%20of%20cell%20biology&rft.au=Firdessa,%20Rebuma&rft.date=2014-08-01&rft.volume=93&rft.issue=8-9&rft.spage=323&rft.epage=337&rft.pages=323-337&rft.issn=0171-9335&rft.eissn=1618-1298&rft_id=info:doi/10.1016/j.ejcb.2014.08.001&rft_dat=%3Cproquest_cross%3E1566824977%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1566824977&rft_id=info:pmid/25224362&rft_els_id=S017193351400106X&rfr_iscdi=true