Coastal ocean data assimilation using a multi-scale three-dimensional variational scheme
A multi-scale three-dimensional variational scheme (MS-3DVAR) is implemented to improve the effectiveness of the assimilation of both very sparse and high-resolution observations into models with resolutions down to 1 km. The improvements are realized through the use of background error covariances...
Gespeichert in:
Veröffentlicht in: | Ocean dynamics 2015-07, Vol.65 (7), p.1001-1015 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1015 |
---|---|
container_issue | 7 |
container_start_page | 1001 |
container_title | Ocean dynamics |
container_volume | 65 |
creator | Li, Zhijin McWilliams, James C. Ide, Kayo Farrara, John D. |
description | A multi-scale three-dimensional variational scheme (MS-3DVAR) is implemented to improve the effectiveness of the assimilation of both very sparse and high-resolution observations into models with resolutions down to 1 km. The improvements are realized through the use of background error covariances of multi-decorrelation length scales and by reducing the inherent observational representativeness errors. MS-3DVAR is applied to coastal ocean data assimilation to handle the wide range of spatial scales that exist in both the dynamics and observations. In the implementation presented here, the cost function consists of two components for large and small scales, and MS-3DVAR is implemented sequentially from large to small scales. A set of observing system simulation experiments (OSSEs) are performed to illustrate the advantages of MS-3DVAR over conventional 3DVAR in assimilating two of the most common types of observations—sparse vertical profiles and high-resolution surface measurements—simultaneously. One month of results from an operational implementation show that both the analysis error and bias are reduced more effectively when using MS-3DVAR. |
doi_str_mv | 10.1007/s10236-015-0850-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709181202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1709181202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-c830144cd3701252a969eeba2e5291b84cfb3deb623f3f6943feb09868a4e6593</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoqKM_wF3BjZtobtKm6VIGXzDgRsFdSDO3ToY-NLeV8d8bHQURXN2z-M7h8jF2AuIchCgvCIRUmgsouDCF4JsddgAaNC-lNLs_WeWwzw6J1kJAqXN5wJ7mg6PRtdng0fXZ0o0uc0ShC60bw9BnE4X-OXNZN7Vj4ORdi9m4ioh8GTrsKTGp_eZi-OJTJr_CDo_YXuNawuPvO2OP11cP81u-uL-5m18uuM9NMXJvlIA890tVCpCFdJWuEGsnsZAV1Cb3Ta2WWGupGtXoKlcN1qIy2rgcdVGpGTvb7r7E4XVCGm0XyGPbuh6HiSyUogIDMumZsdM_6HqYYno5UdpURkihIVGwpXwciCI29iWGzsV3C8J-urZb1za5tp-u7SZ15LZDie2fMf5a_rf0AQRuggQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1689802061</pqid></control><display><type>article</type><title>Coastal ocean data assimilation using a multi-scale three-dimensional variational scheme</title><source>SpringerLink Journals - AutoHoldings</source><creator>Li, Zhijin ; McWilliams, James C. ; Ide, Kayo ; Farrara, John D.</creator><creatorcontrib>Li, Zhijin ; McWilliams, James C. ; Ide, Kayo ; Farrara, John D.</creatorcontrib><description>A multi-scale three-dimensional variational scheme (MS-3DVAR) is implemented to improve the effectiveness of the assimilation of both very sparse and high-resolution observations into models with resolutions down to 1 km. The improvements are realized through the use of background error covariances of multi-decorrelation length scales and by reducing the inherent observational representativeness errors. MS-3DVAR is applied to coastal ocean data assimilation to handle the wide range of spatial scales that exist in both the dynamics and observations. In the implementation presented here, the cost function consists of two components for large and small scales, and MS-3DVAR is implemented sequentially from large to small scales. A set of observing system simulation experiments (OSSEs) are performed to illustrate the advantages of MS-3DVAR over conventional 3DVAR in assimilating two of the most common types of observations—sparse vertical profiles and high-resolution surface measurements—simultaneously. One month of results from an operational implementation show that both the analysis error and bias are reduced more effectively when using MS-3DVAR.</description><identifier>ISSN: 1616-7341</identifier><identifier>EISSN: 1616-7228</identifier><identifier>DOI: 10.1007/s10236-015-0850-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Atmospheric Sciences ; Data assimilation ; Data collection ; Earth and Environmental Science ; Earth Sciences ; Fluid- and Aerodynamics ; Geophysics/Geodesy ; Monitoring/Environmental Analysis ; Oceanography ; Topical Collection on Coastal Ocean Forecasting Science supported by the GODAE OceanView Coastal Oceans and Shelf Seas Task Team (COSS-TT)</subject><ispartof>Ocean dynamics, 2015-07, Vol.65 (7), p.1001-1015</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-c830144cd3701252a969eeba2e5291b84cfb3deb623f3f6943feb09868a4e6593</citedby><cites>FETCH-LOGICAL-c485t-c830144cd3701252a969eeba2e5291b84cfb3deb623f3f6943feb09868a4e6593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10236-015-0850-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10236-015-0850-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Li, Zhijin</creatorcontrib><creatorcontrib>McWilliams, James C.</creatorcontrib><creatorcontrib>Ide, Kayo</creatorcontrib><creatorcontrib>Farrara, John D.</creatorcontrib><title>Coastal ocean data assimilation using a multi-scale three-dimensional variational scheme</title><title>Ocean dynamics</title><addtitle>Ocean Dynamics</addtitle><description>A multi-scale three-dimensional variational scheme (MS-3DVAR) is implemented to improve the effectiveness of the assimilation of both very sparse and high-resolution observations into models with resolutions down to 1 km. The improvements are realized through the use of background error covariances of multi-decorrelation length scales and by reducing the inherent observational representativeness errors. MS-3DVAR is applied to coastal ocean data assimilation to handle the wide range of spatial scales that exist in both the dynamics and observations. In the implementation presented here, the cost function consists of two components for large and small scales, and MS-3DVAR is implemented sequentially from large to small scales. A set of observing system simulation experiments (OSSEs) are performed to illustrate the advantages of MS-3DVAR over conventional 3DVAR in assimilating two of the most common types of observations—sparse vertical profiles and high-resolution surface measurements—simultaneously. One month of results from an operational implementation show that both the analysis error and bias are reduced more effectively when using MS-3DVAR.</description><subject>Atmospheric Sciences</subject><subject>Data assimilation</subject><subject>Data collection</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Fluid- and Aerodynamics</subject><subject>Geophysics/Geodesy</subject><subject>Monitoring/Environmental Analysis</subject><subject>Oceanography</subject><subject>Topical Collection on Coastal Ocean Forecasting Science supported by the GODAE OceanView Coastal Oceans and Shelf Seas Task Team (COSS-TT)</subject><issn>1616-7341</issn><issn>1616-7228</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kEtLxDAUhYMoqKM_wF3BjZtobtKm6VIGXzDgRsFdSDO3ToY-NLeV8d8bHQURXN2z-M7h8jF2AuIchCgvCIRUmgsouDCF4JsddgAaNC-lNLs_WeWwzw6J1kJAqXN5wJ7mg6PRtdng0fXZ0o0uc0ShC60bw9BnE4X-OXNZN7Vj4ORdi9m4ioh8GTrsKTGp_eZi-OJTJr_CDo_YXuNawuPvO2OP11cP81u-uL-5m18uuM9NMXJvlIA890tVCpCFdJWuEGsnsZAV1Cb3Ta2WWGupGtXoKlcN1qIy2rgcdVGpGTvb7r7E4XVCGm0XyGPbuh6HiSyUogIDMumZsdM_6HqYYno5UdpURkihIVGwpXwciCI29iWGzsV3C8J-urZb1za5tp-u7SZ15LZDie2fMf5a_rf0AQRuggQ</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Li, Zhijin</creator><creator>McWilliams, James C.</creator><creator>Ide, Kayo</creator><creator>Farrara, John D.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20150701</creationdate><title>Coastal ocean data assimilation using a multi-scale three-dimensional variational scheme</title><author>Li, Zhijin ; McWilliams, James C. ; Ide, Kayo ; Farrara, John D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-c830144cd3701252a969eeba2e5291b84cfb3deb623f3f6943feb09868a4e6593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Atmospheric Sciences</topic><topic>Data assimilation</topic><topic>Data collection</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Fluid- and Aerodynamics</topic><topic>Geophysics/Geodesy</topic><topic>Monitoring/Environmental Analysis</topic><topic>Oceanography</topic><topic>Topical Collection on Coastal Ocean Forecasting Science supported by the GODAE OceanView Coastal Oceans and Shelf Seas Task Team (COSS-TT)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhijin</creatorcontrib><creatorcontrib>McWilliams, James C.</creatorcontrib><creatorcontrib>Ide, Kayo</creatorcontrib><creatorcontrib>Farrara, John D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Ocean dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhijin</au><au>McWilliams, James C.</au><au>Ide, Kayo</au><au>Farrara, John D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coastal ocean data assimilation using a multi-scale three-dimensional variational scheme</atitle><jtitle>Ocean dynamics</jtitle><stitle>Ocean Dynamics</stitle><date>2015-07-01</date><risdate>2015</risdate><volume>65</volume><issue>7</issue><spage>1001</spage><epage>1015</epage><pages>1001-1015</pages><issn>1616-7341</issn><eissn>1616-7228</eissn><abstract>A multi-scale three-dimensional variational scheme (MS-3DVAR) is implemented to improve the effectiveness of the assimilation of both very sparse and high-resolution observations into models with resolutions down to 1 km. The improvements are realized through the use of background error covariances of multi-decorrelation length scales and by reducing the inherent observational representativeness errors. MS-3DVAR is applied to coastal ocean data assimilation to handle the wide range of spatial scales that exist in both the dynamics and observations. In the implementation presented here, the cost function consists of two components for large and small scales, and MS-3DVAR is implemented sequentially from large to small scales. A set of observing system simulation experiments (OSSEs) are performed to illustrate the advantages of MS-3DVAR over conventional 3DVAR in assimilating two of the most common types of observations—sparse vertical profiles and high-resolution surface measurements—simultaneously. One month of results from an operational implementation show that both the analysis error and bias are reduced more effectively when using MS-3DVAR.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10236-015-0850-x</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-7341 |
ispartof | Ocean dynamics, 2015-07, Vol.65 (7), p.1001-1015 |
issn | 1616-7341 1616-7228 |
language | eng |
recordid | cdi_proquest_miscellaneous_1709181202 |
source | SpringerLink Journals - AutoHoldings |
subjects | Atmospheric Sciences Data assimilation Data collection Earth and Environmental Science Earth Sciences Fluid- and Aerodynamics Geophysics/Geodesy Monitoring/Environmental Analysis Oceanography Topical Collection on Coastal Ocean Forecasting Science supported by the GODAE OceanView Coastal Oceans and Shelf Seas Task Team (COSS-TT) |
title | Coastal ocean data assimilation using a multi-scale three-dimensional variational scheme |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A57%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coastal%20ocean%20data%20assimilation%20using%20a%20multi-scale%20three-dimensional%20variational%20scheme&rft.jtitle=Ocean%20dynamics&rft.au=Li,%20Zhijin&rft.date=2015-07-01&rft.volume=65&rft.issue=7&rft.spage=1001&rft.epage=1015&rft.pages=1001-1015&rft.issn=1616-7341&rft.eissn=1616-7228&rft_id=info:doi/10.1007/s10236-015-0850-x&rft_dat=%3Cproquest_cross%3E1709181202%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1689802061&rft_id=info:pmid/&rfr_iscdi=true |