Coastal ocean data assimilation using a multi-scale three-dimensional variational scheme

A multi-scale three-dimensional variational scheme (MS-3DVAR) is implemented to improve the effectiveness of the assimilation of both very sparse and high-resolution observations into models with resolutions down to 1 km. The improvements are realized through the use of background error covariances...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ocean dynamics 2015-07, Vol.65 (7), p.1001-1015
Hauptverfasser: Li, Zhijin, McWilliams, James C., Ide, Kayo, Farrara, John D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1015
container_issue 7
container_start_page 1001
container_title Ocean dynamics
container_volume 65
creator Li, Zhijin
McWilliams, James C.
Ide, Kayo
Farrara, John D.
description A multi-scale three-dimensional variational scheme (MS-3DVAR) is implemented to improve the effectiveness of the assimilation of both very sparse and high-resolution observations into models with resolutions down to 1 km. The improvements are realized through the use of background error covariances of multi-decorrelation length scales and by reducing the inherent observational representativeness errors. MS-3DVAR is applied to coastal ocean data assimilation to handle the wide range of spatial scales that exist in both the dynamics and observations. In the implementation presented here, the cost function consists of two components for large and small scales, and MS-3DVAR is implemented sequentially from large to small scales. A set of observing system simulation experiments (OSSEs) are performed to illustrate the advantages of MS-3DVAR over conventional 3DVAR in assimilating two of the most common types of observations—sparse vertical profiles and high-resolution surface measurements—simultaneously. One month of results from an operational implementation show that both the analysis error and bias are reduced more effectively when using MS-3DVAR.
doi_str_mv 10.1007/s10236-015-0850-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709181202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1709181202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-c830144cd3701252a969eeba2e5291b84cfb3deb623f3f6943feb09868a4e6593</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoqKM_wF3BjZtobtKm6VIGXzDgRsFdSDO3ToY-NLeV8d8bHQURXN2z-M7h8jF2AuIchCgvCIRUmgsouDCF4JsddgAaNC-lNLs_WeWwzw6J1kJAqXN5wJ7mg6PRtdng0fXZ0o0uc0ShC60bw9BnE4X-OXNZN7Vj4ORdi9m4ioh8GTrsKTGp_eZi-OJTJr_CDo_YXuNawuPvO2OP11cP81u-uL-5m18uuM9NMXJvlIA890tVCpCFdJWuEGsnsZAV1Cb3Ta2WWGupGtXoKlcN1qIy2rgcdVGpGTvb7r7E4XVCGm0XyGPbuh6HiSyUogIDMumZsdM_6HqYYno5UdpURkihIVGwpXwciCI29iWGzsV3C8J-urZb1za5tp-u7SZ15LZDie2fMf5a_rf0AQRuggQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1689802061</pqid></control><display><type>article</type><title>Coastal ocean data assimilation using a multi-scale three-dimensional variational scheme</title><source>SpringerLink Journals - AutoHoldings</source><creator>Li, Zhijin ; McWilliams, James C. ; Ide, Kayo ; Farrara, John D.</creator><creatorcontrib>Li, Zhijin ; McWilliams, James C. ; Ide, Kayo ; Farrara, John D.</creatorcontrib><description>A multi-scale three-dimensional variational scheme (MS-3DVAR) is implemented to improve the effectiveness of the assimilation of both very sparse and high-resolution observations into models with resolutions down to 1 km. The improvements are realized through the use of background error covariances of multi-decorrelation length scales and by reducing the inherent observational representativeness errors. MS-3DVAR is applied to coastal ocean data assimilation to handle the wide range of spatial scales that exist in both the dynamics and observations. In the implementation presented here, the cost function consists of two components for large and small scales, and MS-3DVAR is implemented sequentially from large to small scales. A set of observing system simulation experiments (OSSEs) are performed to illustrate the advantages of MS-3DVAR over conventional 3DVAR in assimilating two of the most common types of observations—sparse vertical profiles and high-resolution surface measurements—simultaneously. One month of results from an operational implementation show that both the analysis error and bias are reduced more effectively when using MS-3DVAR.</description><identifier>ISSN: 1616-7341</identifier><identifier>EISSN: 1616-7228</identifier><identifier>DOI: 10.1007/s10236-015-0850-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Atmospheric Sciences ; Data assimilation ; Data collection ; Earth and Environmental Science ; Earth Sciences ; Fluid- and Aerodynamics ; Geophysics/Geodesy ; Monitoring/Environmental Analysis ; Oceanography ; Topical Collection on Coastal Ocean Forecasting Science supported by the GODAE OceanView Coastal Oceans and Shelf Seas Task Team (COSS-TT)</subject><ispartof>Ocean dynamics, 2015-07, Vol.65 (7), p.1001-1015</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-c830144cd3701252a969eeba2e5291b84cfb3deb623f3f6943feb09868a4e6593</citedby><cites>FETCH-LOGICAL-c485t-c830144cd3701252a969eeba2e5291b84cfb3deb623f3f6943feb09868a4e6593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10236-015-0850-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10236-015-0850-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Li, Zhijin</creatorcontrib><creatorcontrib>McWilliams, James C.</creatorcontrib><creatorcontrib>Ide, Kayo</creatorcontrib><creatorcontrib>Farrara, John D.</creatorcontrib><title>Coastal ocean data assimilation using a multi-scale three-dimensional variational scheme</title><title>Ocean dynamics</title><addtitle>Ocean Dynamics</addtitle><description>A multi-scale three-dimensional variational scheme (MS-3DVAR) is implemented to improve the effectiveness of the assimilation of both very sparse and high-resolution observations into models with resolutions down to 1 km. The improvements are realized through the use of background error covariances of multi-decorrelation length scales and by reducing the inherent observational representativeness errors. MS-3DVAR is applied to coastal ocean data assimilation to handle the wide range of spatial scales that exist in both the dynamics and observations. In the implementation presented here, the cost function consists of two components for large and small scales, and MS-3DVAR is implemented sequentially from large to small scales. A set of observing system simulation experiments (OSSEs) are performed to illustrate the advantages of MS-3DVAR over conventional 3DVAR in assimilating two of the most common types of observations—sparse vertical profiles and high-resolution surface measurements—simultaneously. One month of results from an operational implementation show that both the analysis error and bias are reduced more effectively when using MS-3DVAR.</description><subject>Atmospheric Sciences</subject><subject>Data assimilation</subject><subject>Data collection</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Fluid- and Aerodynamics</subject><subject>Geophysics/Geodesy</subject><subject>Monitoring/Environmental Analysis</subject><subject>Oceanography</subject><subject>Topical Collection on Coastal Ocean Forecasting Science supported by the GODAE OceanView Coastal Oceans and Shelf Seas Task Team (COSS-TT)</subject><issn>1616-7341</issn><issn>1616-7228</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kEtLxDAUhYMoqKM_wF3BjZtobtKm6VIGXzDgRsFdSDO3ToY-NLeV8d8bHQURXN2z-M7h8jF2AuIchCgvCIRUmgsouDCF4JsddgAaNC-lNLs_WeWwzw6J1kJAqXN5wJ7mg6PRtdng0fXZ0o0uc0ShC60bw9BnE4X-OXNZN7Vj4ORdi9m4ioh8GTrsKTGp_eZi-OJTJr_CDo_YXuNawuPvO2OP11cP81u-uL-5m18uuM9NMXJvlIA890tVCpCFdJWuEGsnsZAV1Cb3Ta2WWGupGtXoKlcN1qIy2rgcdVGpGTvb7r7E4XVCGm0XyGPbuh6HiSyUogIDMumZsdM_6HqYYno5UdpURkihIVGwpXwciCI29iWGzsV3C8J-urZb1za5tp-u7SZ15LZDie2fMf5a_rf0AQRuggQ</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Li, Zhijin</creator><creator>McWilliams, James C.</creator><creator>Ide, Kayo</creator><creator>Farrara, John D.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20150701</creationdate><title>Coastal ocean data assimilation using a multi-scale three-dimensional variational scheme</title><author>Li, Zhijin ; McWilliams, James C. ; Ide, Kayo ; Farrara, John D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-c830144cd3701252a969eeba2e5291b84cfb3deb623f3f6943feb09868a4e6593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Atmospheric Sciences</topic><topic>Data assimilation</topic><topic>Data collection</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Fluid- and Aerodynamics</topic><topic>Geophysics/Geodesy</topic><topic>Monitoring/Environmental Analysis</topic><topic>Oceanography</topic><topic>Topical Collection on Coastal Ocean Forecasting Science supported by the GODAE OceanView Coastal Oceans and Shelf Seas Task Team (COSS-TT)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhijin</creatorcontrib><creatorcontrib>McWilliams, James C.</creatorcontrib><creatorcontrib>Ide, Kayo</creatorcontrib><creatorcontrib>Farrara, John D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Ocean dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhijin</au><au>McWilliams, James C.</au><au>Ide, Kayo</au><au>Farrara, John D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coastal ocean data assimilation using a multi-scale three-dimensional variational scheme</atitle><jtitle>Ocean dynamics</jtitle><stitle>Ocean Dynamics</stitle><date>2015-07-01</date><risdate>2015</risdate><volume>65</volume><issue>7</issue><spage>1001</spage><epage>1015</epage><pages>1001-1015</pages><issn>1616-7341</issn><eissn>1616-7228</eissn><abstract>A multi-scale three-dimensional variational scheme (MS-3DVAR) is implemented to improve the effectiveness of the assimilation of both very sparse and high-resolution observations into models with resolutions down to 1 km. The improvements are realized through the use of background error covariances of multi-decorrelation length scales and by reducing the inherent observational representativeness errors. MS-3DVAR is applied to coastal ocean data assimilation to handle the wide range of spatial scales that exist in both the dynamics and observations. In the implementation presented here, the cost function consists of two components for large and small scales, and MS-3DVAR is implemented sequentially from large to small scales. A set of observing system simulation experiments (OSSEs) are performed to illustrate the advantages of MS-3DVAR over conventional 3DVAR in assimilating two of the most common types of observations—sparse vertical profiles and high-resolution surface measurements—simultaneously. One month of results from an operational implementation show that both the analysis error and bias are reduced more effectively when using MS-3DVAR.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10236-015-0850-x</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1616-7341
ispartof Ocean dynamics, 2015-07, Vol.65 (7), p.1001-1015
issn 1616-7341
1616-7228
language eng
recordid cdi_proquest_miscellaneous_1709181202
source SpringerLink Journals - AutoHoldings
subjects Atmospheric Sciences
Data assimilation
Data collection
Earth and Environmental Science
Earth Sciences
Fluid- and Aerodynamics
Geophysics/Geodesy
Monitoring/Environmental Analysis
Oceanography
Topical Collection on Coastal Ocean Forecasting Science supported by the GODAE OceanView Coastal Oceans and Shelf Seas Task Team (COSS-TT)
title Coastal ocean data assimilation using a multi-scale three-dimensional variational scheme
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A57%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coastal%20ocean%20data%20assimilation%20using%20a%20multi-scale%20three-dimensional%20variational%20scheme&rft.jtitle=Ocean%20dynamics&rft.au=Li,%20Zhijin&rft.date=2015-07-01&rft.volume=65&rft.issue=7&rft.spage=1001&rft.epage=1015&rft.pages=1001-1015&rft.issn=1616-7341&rft.eissn=1616-7228&rft_id=info:doi/10.1007/s10236-015-0850-x&rft_dat=%3Cproquest_cross%3E1709181202%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1689802061&rft_id=info:pmid/&rfr_iscdi=true