Foreground-Background Separation by Feed-forward Neural Networks in Old Manuscripts

Artificial Neural Networks (ANNs) are widely used techniques in image processing and pattern recognition. Despite of their power in classification tasks, for pattern recognition, they show limited applicability in the earlier stages such as the foreground-background separation (FBS). In this paper a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Informatica (Ljubljana) 2014-12, Vol.38 (4), p.329-329
Hauptverfasser: Kefali, Abderrahmane, Sari, Toufik, Bahi, Halima
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 329
container_issue 4
container_start_page 329
container_title Informatica (Ljubljana)
container_volume 38
creator Kefali, Abderrahmane
Sari, Toufik
Bahi, Halima
description Artificial Neural Networks (ANNs) are widely used techniques in image processing and pattern recognition. Despite of their power in classification tasks, for pattern recognition, they show limited applicability in the earlier stages such as the foreground-background separation (FBS). In this paper a novel FBS technique based on ANN is applied on old documents with a variety of degradations. The idea is to train the ANN on a set of pairs of original images and their respective ideal black and white ones relying on global and local information. We ran several experiments on benchmark and synthetic data and we obtained better results than state-of-the art methods.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709176009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1709176009</sourcerecordid><originalsourceid>FETCH-LOGICAL-p249t-f89274aeb15313493e3b4f7d5def08a79cfa3e6925483b6998b1d9a7f2ec8b1d3</originalsourceid><addsrcrecordid>eNqFj0FLwzAYhoMoOKf_IeDFSyBpkibfUYdTYbrD9DzS5ot0q01NWob_3g49efH0vIeHB94TMhNWKyatEadkxqXmTGsoz8lFzjvOlRS2mJHNMiZ8T3HsPLtz9f5n0g32LrmhiR2tvugS0bMQ08ElT19wTK6dMBxi2mfadHTdevrsujHXqemHfEnOgmszXv1yTt6W96-LR7ZaPzwtblesLxQMLFgojHJYCS2FVCBRVioYrz0Gbp2BOjiJJRRaWVmVALYSHpwJBdbHKefk5qfbp_g5Yh62H02usW1dh3HMW2E4CFNyDv-r5dTnWqujev1H3cUxddORydIcDFjJ5TeKTWlE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1650979830</pqid></control><display><type>article</type><title>Foreground-Background Separation by Feed-forward Neural Networks in Old Manuscripts</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kefali, Abderrahmane ; Sari, Toufik ; Bahi, Halima</creator><creatorcontrib>Kefali, Abderrahmane ; Sari, Toufik ; Bahi, Halima</creatorcontrib><description>Artificial Neural Networks (ANNs) are widely used techniques in image processing and pattern recognition. Despite of their power in classification tasks, for pattern recognition, they show limited applicability in the earlier stages such as the foreground-background separation (FBS). In this paper a novel FBS technique based on ANN is applied on old documents with a variety of degradations. The idea is to train the ANN on a set of pairs of original images and their respective ideal black and white ones relying on global and local information. We ran several experiments on benchmark and synthetic data and we obtained better results than state-of-the art methods.</description><identifier>ISSN: 0350-5596</identifier><identifier>EISSN: 1854-3871</identifier><language>eng</language><publisher>Ljubljana: Slovenian Society Informatika / Slovensko drustvo Informatika</publisher><subject>Benchmarking ; Classification ; Learning theory ; Neural networks ; Pattern recognition ; Separation ; Tasks ; Trains</subject><ispartof>Informatica (Ljubljana), 2014-12, Vol.38 (4), p.329-329</ispartof><rights>Copyright Slovenian Society Informatika / Slovensko drustvo Informatika Dec 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Kefali, Abderrahmane</creatorcontrib><creatorcontrib>Sari, Toufik</creatorcontrib><creatorcontrib>Bahi, Halima</creatorcontrib><title>Foreground-Background Separation by Feed-forward Neural Networks in Old Manuscripts</title><title>Informatica (Ljubljana)</title><description>Artificial Neural Networks (ANNs) are widely used techniques in image processing and pattern recognition. Despite of their power in classification tasks, for pattern recognition, they show limited applicability in the earlier stages such as the foreground-background separation (FBS). In this paper a novel FBS technique based on ANN is applied on old documents with a variety of degradations. The idea is to train the ANN on a set of pairs of original images and their respective ideal black and white ones relying on global and local information. We ran several experiments on benchmark and synthetic data and we obtained better results than state-of-the art methods.</description><subject>Benchmarking</subject><subject>Classification</subject><subject>Learning theory</subject><subject>Neural networks</subject><subject>Pattern recognition</subject><subject>Separation</subject><subject>Tasks</subject><subject>Trains</subject><issn>0350-5596</issn><issn>1854-3871</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFj0FLwzAYhoMoOKf_IeDFSyBpkibfUYdTYbrD9DzS5ot0q01NWob_3g49efH0vIeHB94TMhNWKyatEadkxqXmTGsoz8lFzjvOlRS2mJHNMiZ8T3HsPLtz9f5n0g32LrmhiR2tvugS0bMQ08ElT19wTK6dMBxi2mfadHTdevrsujHXqemHfEnOgmszXv1yTt6W96-LR7ZaPzwtblesLxQMLFgojHJYCS2FVCBRVioYrz0Gbp2BOjiJJRRaWVmVALYSHpwJBdbHKefk5qfbp_g5Yh62H02usW1dh3HMW2E4CFNyDv-r5dTnWqujev1H3cUxddORydIcDFjJ5TeKTWlE</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Kefali, Abderrahmane</creator><creator>Sari, Toufik</creator><creator>Bahi, Halima</creator><general>Slovenian Society Informatika / Slovensko drustvo Informatika</general><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BYOGL</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7QO</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20141201</creationdate><title>Foreground-Background Separation by Feed-forward Neural Networks in Old Manuscripts</title><author>Kefali, Abderrahmane ; Sari, Toufik ; Bahi, Halima</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p249t-f89274aeb15313493e3b4f7d5def08a79cfa3e6925483b6998b1d9a7f2ec8b1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Benchmarking</topic><topic>Classification</topic><topic>Learning theory</topic><topic>Neural networks</topic><topic>Pattern recognition</topic><topic>Separation</topic><topic>Tasks</topic><topic>Trains</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kefali, Abderrahmane</creatorcontrib><creatorcontrib>Sari, Toufik</creatorcontrib><creatorcontrib>Bahi, Halima</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East Europe, Central Europe Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Biotechnology Research Abstracts</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Informatica (Ljubljana)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kefali, Abderrahmane</au><au>Sari, Toufik</au><au>Bahi, Halima</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Foreground-Background Separation by Feed-forward Neural Networks in Old Manuscripts</atitle><jtitle>Informatica (Ljubljana)</jtitle><date>2014-12-01</date><risdate>2014</risdate><volume>38</volume><issue>4</issue><spage>329</spage><epage>329</epage><pages>329-329</pages><issn>0350-5596</issn><eissn>1854-3871</eissn><abstract>Artificial Neural Networks (ANNs) are widely used techniques in image processing and pattern recognition. Despite of their power in classification tasks, for pattern recognition, they show limited applicability in the earlier stages such as the foreground-background separation (FBS). In this paper a novel FBS technique based on ANN is applied on old documents with a variety of degradations. The idea is to train the ANN on a set of pairs of original images and their respective ideal black and white ones relying on global and local information. We ran several experiments on benchmark and synthetic data and we obtained better results than state-of-the art methods.</abstract><cop>Ljubljana</cop><pub>Slovenian Society Informatika / Slovensko drustvo Informatika</pub><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0350-5596
ispartof Informatica (Ljubljana), 2014-12, Vol.38 (4), p.329-329
issn 0350-5596
1854-3871
language eng
recordid cdi_proquest_miscellaneous_1709176009
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Benchmarking
Classification
Learning theory
Neural networks
Pattern recognition
Separation
Tasks
Trains
title Foreground-Background Separation by Feed-forward Neural Networks in Old Manuscripts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T04%3A01%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Foreground-Background%20Separation%20by%20Feed-forward%20Neural%20Networks%20in%20Old%20Manuscripts&rft.jtitle=Informatica%20(Ljubljana)&rft.au=Kefali,%20Abderrahmane&rft.date=2014-12-01&rft.volume=38&rft.issue=4&rft.spage=329&rft.epage=329&rft.pages=329-329&rft.issn=0350-5596&rft.eissn=1854-3871&rft_id=info:doi/&rft_dat=%3Cproquest%3E1709176009%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1650979830&rft_id=info:pmid/&rfr_iscdi=true