Flexible and Elastic Scaffolds for Cartilage Tissue Engineering Prepared by Stereolithography Using Poly(trimethylene carbonate)-Based Resins
The aim of this study is to investigate the applicability of flexible and elastic poly(trimethylene carbonate) (PTMC) structures prepared by stereolithography as scaffolds for cartilage tissue engineering. A three‐armed methacrylated PTMC macromer with a molecular weight of 3100 g mol−1 is used to b...
Gespeichert in:
Veröffentlicht in: | Macromolecular bioscience 2013-12, Vol.13 (12), p.1711-1719 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1719 |
---|---|
container_issue | 12 |
container_start_page | 1711 |
container_title | Macromolecular bioscience |
container_volume | 13 |
creator | Schüller-Ravoo, Sigrid Teixeira, Sandra M. Feijen, Jan Grijpma, Dirk W. Poot, André A. |
description | The aim of this study is to investigate the applicability of flexible and elastic poly(trimethylene carbonate) (PTMC) structures prepared by stereolithography as scaffolds for cartilage tissue engineering. A three‐armed methacrylated PTMC macromer with a molecular weight of 3100 g mol−1 is used to build designed scaffolds with a pore diameter of 350 ± 12 μm and a porosity of 54.0 ± 2.2%. Upon seeding of bovine chondrocytes in the scaffolds, the cells adhere and spread on the PTMC surface. After culturing for 6 weeks, also cells with a round morphology are present, indicative of the differentiated chondrocyte phenotype. Sulphated glycosaminoglycans and fibrillar collagens are deposited by the cells. During culturing for 6 weeks, the compression moduli of the constructs increases 50% to approximately 100 kPa.
Stereolithography is a rapid prototyping technique that can be used to build tissue engineering scaffolds, with full control of pore architecture, pore size, and scaffold porosity. In this study, flexible and elastic poly(trimethylene carbonate) scaffolds suitable for cartilage tissue engineering are prepared by means of stereolithography. |
doi_str_mv | 10.1002/mabi.201300399 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709174796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1709174796</sourcerecordid><originalsourceid>FETCH-LOGICAL-i4319-28c4940ba4e211bebacf674687cfa01d0a6829e6d9ac0e3db25653a63dca22d43</originalsourceid><addsrcrecordid>eNqFkU9P3DAQxaOqCCjl2mPlIz2E-l_s-AirhSIBpWVRj9bEmey69SaLnVXJh-h3bujSXDnNjOb3Rk_zsuwDo6eMUv55DZU_5ZQJSoUxb7JDppjKC2aKt1Nf6oPsXUo_KWW6NHw_O-CSM8locZj9uQj45KuABNqazAOk3jty76BpulAn0nSRzCD2PsASycKntEUyb5e-RYy-XZK7iBuIWJNqIPc9RuyC71fdMsJmNZCH9I_pwnDSR7_GfjUEbJE4iFXXQo-f8nNIo_o7jmR6n-01EBIev9Sj7OFivph9ya-_Xl7Nzq5zLwUzOS-dNJJWIJEzVmEFrlFaqlK7BiirKaiSG1S1AUdR1BUvVCFAidoB57UUR9nJ7u4mdo9bTL1d--QwBGix2ybLNDVMS23U66jS2khecPM6KrUejYw-R_TjC7qt1ljbzfgciIP9H8wImB3w2wccpj2j9jl2-xy7nWK3N2fnV9M0avOd1qcenyYtxF9WaaEL--P20t7Jbwt9Q6mV4i9Si7FU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1477565468</pqid></control><display><type>article</type><title>Flexible and Elastic Scaffolds for Cartilage Tissue Engineering Prepared by Stereolithography Using Poly(trimethylene carbonate)-Based Resins</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Schüller-Ravoo, Sigrid ; Teixeira, Sandra M. ; Feijen, Jan ; Grijpma, Dirk W. ; Poot, André A.</creator><creatorcontrib>Schüller-Ravoo, Sigrid ; Teixeira, Sandra M. ; Feijen, Jan ; Grijpma, Dirk W. ; Poot, André A.</creatorcontrib><description>The aim of this study is to investigate the applicability of flexible and elastic poly(trimethylene carbonate) (PTMC) structures prepared by stereolithography as scaffolds for cartilage tissue engineering. A three‐armed methacrylated PTMC macromer with a molecular weight of 3100 g mol−1 is used to build designed scaffolds with a pore diameter of 350 ± 12 μm and a porosity of 54.0 ± 2.2%. Upon seeding of bovine chondrocytes in the scaffolds, the cells adhere and spread on the PTMC surface. After culturing for 6 weeks, also cells with a round morphology are present, indicative of the differentiated chondrocyte phenotype. Sulphated glycosaminoglycans and fibrillar collagens are deposited by the cells. During culturing for 6 weeks, the compression moduli of the constructs increases 50% to approximately 100 kPa.
Stereolithography is a rapid prototyping technique that can be used to build tissue engineering scaffolds, with full control of pore architecture, pore size, and scaffold porosity. In this study, flexible and elastic poly(trimethylene carbonate) scaffolds suitable for cartilage tissue engineering are prepared by means of stereolithography.</description><identifier>ISSN: 1616-5187</identifier><identifier>EISSN: 1616-5195</identifier><identifier>DOI: 10.1002/mabi.201300399</identifier><identifier>PMID: 24214105</identifier><language>eng</language><publisher>Germany: Blackwell Publishing Ltd</publisher><subject>Animals ; Biocompatible Materials - chemical synthesis ; Biocompatible Materials - pharmacology ; biodegradable scaffolds ; Carbonates ; Cartilage ; Cartilage - cytology ; Cartilage - drug effects ; Cattle ; Cell Adhesion - drug effects ; Cell Differentiation - drug effects ; Cell Proliferation - drug effects ; Cells, Cultured ; chondrocytes ; Chondrocytes - cytology ; Chondrocytes - drug effects ; Chondrocytes - physiology ; Construction ; Dioxanes - chemistry ; Elasticity ; Fibrillar Collagens - biosynthesis ; Fibrillar Collagens - secretion ; Glycosaminoglycans ; Glycosaminoglycans - biosynthesis ; Glycosaminoglycans - secretion ; Materials Testing ; Methacrylates - chemistry ; Microscopy, Electrochemical, Scanning ; Photochemical Processes ; Pliability ; poly(trimethylene carbonate) macromers ; Polymers - chemistry ; Porosity ; Scaffolds ; Spreads ; Stereolithography ; Tensile Strength ; Tissue engineering ; Tissue Engineering - methods ; Tissue Scaffolds</subject><ispartof>Macromolecular bioscience, 2013-12, Vol.13 (12), p.1711-1719</ispartof><rights>2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmabi.201300399$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmabi.201300399$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24214105$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schüller-Ravoo, Sigrid</creatorcontrib><creatorcontrib>Teixeira, Sandra M.</creatorcontrib><creatorcontrib>Feijen, Jan</creatorcontrib><creatorcontrib>Grijpma, Dirk W.</creatorcontrib><creatorcontrib>Poot, André A.</creatorcontrib><title>Flexible and Elastic Scaffolds for Cartilage Tissue Engineering Prepared by Stereolithography Using Poly(trimethylene carbonate)-Based Resins</title><title>Macromolecular bioscience</title><addtitle>Macromol. Biosci</addtitle><description>The aim of this study is to investigate the applicability of flexible and elastic poly(trimethylene carbonate) (PTMC) structures prepared by stereolithography as scaffolds for cartilage tissue engineering. A three‐armed methacrylated PTMC macromer with a molecular weight of 3100 g mol−1 is used to build designed scaffolds with a pore diameter of 350 ± 12 μm and a porosity of 54.0 ± 2.2%. Upon seeding of bovine chondrocytes in the scaffolds, the cells adhere and spread on the PTMC surface. After culturing for 6 weeks, also cells with a round morphology are present, indicative of the differentiated chondrocyte phenotype. Sulphated glycosaminoglycans and fibrillar collagens are deposited by the cells. During culturing for 6 weeks, the compression moduli of the constructs increases 50% to approximately 100 kPa.
Stereolithography is a rapid prototyping technique that can be used to build tissue engineering scaffolds, with full control of pore architecture, pore size, and scaffold porosity. In this study, flexible and elastic poly(trimethylene carbonate) scaffolds suitable for cartilage tissue engineering are prepared by means of stereolithography.</description><subject>Animals</subject><subject>Biocompatible Materials - chemical synthesis</subject><subject>Biocompatible Materials - pharmacology</subject><subject>biodegradable scaffolds</subject><subject>Carbonates</subject><subject>Cartilage</subject><subject>Cartilage - cytology</subject><subject>Cartilage - drug effects</subject><subject>Cattle</subject><subject>Cell Adhesion - drug effects</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell Proliferation - drug effects</subject><subject>Cells, Cultured</subject><subject>chondrocytes</subject><subject>Chondrocytes - cytology</subject><subject>Chondrocytes - drug effects</subject><subject>Chondrocytes - physiology</subject><subject>Construction</subject><subject>Dioxanes - chemistry</subject><subject>Elasticity</subject><subject>Fibrillar Collagens - biosynthesis</subject><subject>Fibrillar Collagens - secretion</subject><subject>Glycosaminoglycans</subject><subject>Glycosaminoglycans - biosynthesis</subject><subject>Glycosaminoglycans - secretion</subject><subject>Materials Testing</subject><subject>Methacrylates - chemistry</subject><subject>Microscopy, Electrochemical, Scanning</subject><subject>Photochemical Processes</subject><subject>Pliability</subject><subject>poly(trimethylene carbonate) macromers</subject><subject>Polymers - chemistry</subject><subject>Porosity</subject><subject>Scaffolds</subject><subject>Spreads</subject><subject>Stereolithography</subject><subject>Tensile Strength</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds</subject><issn>1616-5187</issn><issn>1616-5195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU9P3DAQxaOqCCjl2mPlIz2E-l_s-AirhSIBpWVRj9bEmey69SaLnVXJh-h3bujSXDnNjOb3Rk_zsuwDo6eMUv55DZU_5ZQJSoUxb7JDppjKC2aKt1Nf6oPsXUo_KWW6NHw_O-CSM8locZj9uQj45KuABNqazAOk3jty76BpulAn0nSRzCD2PsASycKntEUyb5e-RYy-XZK7iBuIWJNqIPc9RuyC71fdMsJmNZCH9I_pwnDSR7_GfjUEbJE4iFXXQo-f8nNIo_o7jmR6n-01EBIev9Sj7OFivph9ya-_Xl7Nzq5zLwUzOS-dNJJWIJEzVmEFrlFaqlK7BiirKaiSG1S1AUdR1BUvVCFAidoB57UUR9nJ7u4mdo9bTL1d--QwBGix2ybLNDVMS23U66jS2khecPM6KrUejYw-R_TjC7qt1ljbzfgciIP9H8wImB3w2wccpj2j9jl2-xy7nWK3N2fnV9M0avOd1qcenyYtxF9WaaEL--P20t7Jbwt9Q6mV4i9Si7FU</recordid><startdate>201312</startdate><enddate>201312</enddate><creator>Schüller-Ravoo, Sigrid</creator><creator>Teixeira, Sandra M.</creator><creator>Feijen, Jan</creator><creator>Grijpma, Dirk W.</creator><creator>Poot, André A.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7QO</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>201312</creationdate><title>Flexible and Elastic Scaffolds for Cartilage Tissue Engineering Prepared by Stereolithography Using Poly(trimethylene carbonate)-Based Resins</title><author>Schüller-Ravoo, Sigrid ; Teixeira, Sandra M. ; Feijen, Jan ; Grijpma, Dirk W. ; Poot, André A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i4319-28c4940ba4e211bebacf674687cfa01d0a6829e6d9ac0e3db25653a63dca22d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Biocompatible Materials - chemical synthesis</topic><topic>Biocompatible Materials - pharmacology</topic><topic>biodegradable scaffolds</topic><topic>Carbonates</topic><topic>Cartilage</topic><topic>Cartilage - cytology</topic><topic>Cartilage - drug effects</topic><topic>Cattle</topic><topic>Cell Adhesion - drug effects</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell Proliferation - drug effects</topic><topic>Cells, Cultured</topic><topic>chondrocytes</topic><topic>Chondrocytes - cytology</topic><topic>Chondrocytes - drug effects</topic><topic>Chondrocytes - physiology</topic><topic>Construction</topic><topic>Dioxanes - chemistry</topic><topic>Elasticity</topic><topic>Fibrillar Collagens - biosynthesis</topic><topic>Fibrillar Collagens - secretion</topic><topic>Glycosaminoglycans</topic><topic>Glycosaminoglycans - biosynthesis</topic><topic>Glycosaminoglycans - secretion</topic><topic>Materials Testing</topic><topic>Methacrylates - chemistry</topic><topic>Microscopy, Electrochemical, Scanning</topic><topic>Photochemical Processes</topic><topic>Pliability</topic><topic>poly(trimethylene carbonate) macromers</topic><topic>Polymers - chemistry</topic><topic>Porosity</topic><topic>Scaffolds</topic><topic>Spreads</topic><topic>Stereolithography</topic><topic>Tensile Strength</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schüller-Ravoo, Sigrid</creatorcontrib><creatorcontrib>Teixeira, Sandra M.</creatorcontrib><creatorcontrib>Feijen, Jan</creatorcontrib><creatorcontrib>Grijpma, Dirk W.</creatorcontrib><creatorcontrib>Poot, André A.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology Research Abstracts</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Macromolecular bioscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schüller-Ravoo, Sigrid</au><au>Teixeira, Sandra M.</au><au>Feijen, Jan</au><au>Grijpma, Dirk W.</au><au>Poot, André A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flexible and Elastic Scaffolds for Cartilage Tissue Engineering Prepared by Stereolithography Using Poly(trimethylene carbonate)-Based Resins</atitle><jtitle>Macromolecular bioscience</jtitle><addtitle>Macromol. Biosci</addtitle><date>2013-12</date><risdate>2013</risdate><volume>13</volume><issue>12</issue><spage>1711</spage><epage>1719</epage><pages>1711-1719</pages><issn>1616-5187</issn><eissn>1616-5195</eissn><abstract>The aim of this study is to investigate the applicability of flexible and elastic poly(trimethylene carbonate) (PTMC) structures prepared by stereolithography as scaffolds for cartilage tissue engineering. A three‐armed methacrylated PTMC macromer with a molecular weight of 3100 g mol−1 is used to build designed scaffolds with a pore diameter of 350 ± 12 μm and a porosity of 54.0 ± 2.2%. Upon seeding of bovine chondrocytes in the scaffolds, the cells adhere and spread on the PTMC surface. After culturing for 6 weeks, also cells with a round morphology are present, indicative of the differentiated chondrocyte phenotype. Sulphated glycosaminoglycans and fibrillar collagens are deposited by the cells. During culturing for 6 weeks, the compression moduli of the constructs increases 50% to approximately 100 kPa.
Stereolithography is a rapid prototyping technique that can be used to build tissue engineering scaffolds, with full control of pore architecture, pore size, and scaffold porosity. In this study, flexible and elastic poly(trimethylene carbonate) scaffolds suitable for cartilage tissue engineering are prepared by means of stereolithography.</abstract><cop>Germany</cop><pub>Blackwell Publishing Ltd</pub><pmid>24214105</pmid><doi>10.1002/mabi.201300399</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-5187 |
ispartof | Macromolecular bioscience, 2013-12, Vol.13 (12), p.1711-1719 |
issn | 1616-5187 1616-5195 |
language | eng |
recordid | cdi_proquest_miscellaneous_1709174796 |
source | MEDLINE; Wiley Journals |
subjects | Animals Biocompatible Materials - chemical synthesis Biocompatible Materials - pharmacology biodegradable scaffolds Carbonates Cartilage Cartilage - cytology Cartilage - drug effects Cattle Cell Adhesion - drug effects Cell Differentiation - drug effects Cell Proliferation - drug effects Cells, Cultured chondrocytes Chondrocytes - cytology Chondrocytes - drug effects Chondrocytes - physiology Construction Dioxanes - chemistry Elasticity Fibrillar Collagens - biosynthesis Fibrillar Collagens - secretion Glycosaminoglycans Glycosaminoglycans - biosynthesis Glycosaminoglycans - secretion Materials Testing Methacrylates - chemistry Microscopy, Electrochemical, Scanning Photochemical Processes Pliability poly(trimethylene carbonate) macromers Polymers - chemistry Porosity Scaffolds Spreads Stereolithography Tensile Strength Tissue engineering Tissue Engineering - methods Tissue Scaffolds |
title | Flexible and Elastic Scaffolds for Cartilage Tissue Engineering Prepared by Stereolithography Using Poly(trimethylene carbonate)-Based Resins |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A14%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flexible%20and%20Elastic%20Scaffolds%20for%20Cartilage%20Tissue%20Engineering%20Prepared%20by%20Stereolithography%20Using%20Poly(trimethylene%20carbonate)-Based%20Resins&rft.jtitle=Macromolecular%20bioscience&rft.au=Sch%C3%BCller-Ravoo,%20Sigrid&rft.date=2013-12&rft.volume=13&rft.issue=12&rft.spage=1711&rft.epage=1719&rft.pages=1711-1719&rft.issn=1616-5187&rft.eissn=1616-5195&rft_id=info:doi/10.1002/mabi.201300399&rft_dat=%3Cproquest_pubme%3E1709174796%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1477565468&rft_id=info:pmid/24214105&rfr_iscdi=true |