Flexible and Elastic Scaffolds for Cartilage Tissue Engineering Prepared by Stereolithography Using Poly(trimethylene carbonate)-Based Resins

The aim of this study is to investigate the applicability of flexible and elastic poly(trimethylene carbonate) (PTMC) structures prepared by stereolithography as scaffolds for cartilage tissue engineering. A three‐armed methacrylated PTMC macromer with a molecular weight of 3100 g mol−1 is used to b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular bioscience 2013-12, Vol.13 (12), p.1711-1719
Hauptverfasser: Schüller-Ravoo, Sigrid, Teixeira, Sandra M., Feijen, Jan, Grijpma, Dirk W., Poot, André A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1719
container_issue 12
container_start_page 1711
container_title Macromolecular bioscience
container_volume 13
creator Schüller-Ravoo, Sigrid
Teixeira, Sandra M.
Feijen, Jan
Grijpma, Dirk W.
Poot, André A.
description The aim of this study is to investigate the applicability of flexible and elastic poly(trimethylene carbonate) (PTMC) structures prepared by stereolithography as scaffolds for cartilage tissue engineering. A three‐armed methacrylated PTMC macromer with a molecular weight of 3100 g mol−1 is used to build designed scaffolds with a pore diameter of 350 ± 12 μm and a porosity of 54.0 ± 2.2%. Upon seeding of bovine chondrocytes in the scaffolds, the cells adhere and spread on the PTMC surface. After culturing for 6 weeks, also cells with a round morphology are present, indicative of the differentiated chondrocyte phenotype. Sulphated glycosaminoglycans and fibrillar collagens are deposited by the cells. During culturing for 6 weeks, the compression moduli of the constructs increases 50% to approximately 100 kPa. Stereolithography is a rapid prototyping technique that can be used to build tissue engineering scaffolds, with full control of pore architecture, pore size, and scaffold porosity. In this study, flexible and elastic poly(trimethylene carbonate) scaffolds suitable for cartilage tissue engineering are prepared by means of stereolithography.
doi_str_mv 10.1002/mabi.201300399
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709174796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1709174796</sourcerecordid><originalsourceid>FETCH-LOGICAL-i4319-28c4940ba4e211bebacf674687cfa01d0a6829e6d9ac0e3db25653a63dca22d43</originalsourceid><addsrcrecordid>eNqFkU9P3DAQxaOqCCjl2mPlIz2E-l_s-AirhSIBpWVRj9bEmey69SaLnVXJh-h3bujSXDnNjOb3Rk_zsuwDo6eMUv55DZU_5ZQJSoUxb7JDppjKC2aKt1Nf6oPsXUo_KWW6NHw_O-CSM8locZj9uQj45KuABNqazAOk3jty76BpulAn0nSRzCD2PsASycKntEUyb5e-RYy-XZK7iBuIWJNqIPc9RuyC71fdMsJmNZCH9I_pwnDSR7_GfjUEbJE4iFXXQo-f8nNIo_o7jmR6n-01EBIev9Sj7OFivph9ya-_Xl7Nzq5zLwUzOS-dNJJWIJEzVmEFrlFaqlK7BiirKaiSG1S1AUdR1BUvVCFAidoB57UUR9nJ7u4mdo9bTL1d--QwBGix2ybLNDVMS23U66jS2khecPM6KrUejYw-R_TjC7qt1ljbzfgciIP9H8wImB3w2wccpj2j9jl2-xy7nWK3N2fnV9M0avOd1qcenyYtxF9WaaEL--P20t7Jbwt9Q6mV4i9Si7FU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1477565468</pqid></control><display><type>article</type><title>Flexible and Elastic Scaffolds for Cartilage Tissue Engineering Prepared by Stereolithography Using Poly(trimethylene carbonate)-Based Resins</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Schüller-Ravoo, Sigrid ; Teixeira, Sandra M. ; Feijen, Jan ; Grijpma, Dirk W. ; Poot, André A.</creator><creatorcontrib>Schüller-Ravoo, Sigrid ; Teixeira, Sandra M. ; Feijen, Jan ; Grijpma, Dirk W. ; Poot, André A.</creatorcontrib><description>The aim of this study is to investigate the applicability of flexible and elastic poly(trimethylene carbonate) (PTMC) structures prepared by stereolithography as scaffolds for cartilage tissue engineering. A three‐armed methacrylated PTMC macromer with a molecular weight of 3100 g mol−1 is used to build designed scaffolds with a pore diameter of 350 ± 12 μm and a porosity of 54.0 ± 2.2%. Upon seeding of bovine chondrocytes in the scaffolds, the cells adhere and spread on the PTMC surface. After culturing for 6 weeks, also cells with a round morphology are present, indicative of the differentiated chondrocyte phenotype. Sulphated glycosaminoglycans and fibrillar collagens are deposited by the cells. During culturing for 6 weeks, the compression moduli of the constructs increases 50% to approximately 100 kPa. Stereolithography is a rapid prototyping technique that can be used to build tissue engineering scaffolds, with full control of pore architecture, pore size, and scaffold porosity. In this study, flexible and elastic poly(trimethylene carbonate) scaffolds suitable for cartilage tissue engineering are prepared by means of stereolithography.</description><identifier>ISSN: 1616-5187</identifier><identifier>EISSN: 1616-5195</identifier><identifier>DOI: 10.1002/mabi.201300399</identifier><identifier>PMID: 24214105</identifier><language>eng</language><publisher>Germany: Blackwell Publishing Ltd</publisher><subject>Animals ; Biocompatible Materials - chemical synthesis ; Biocompatible Materials - pharmacology ; biodegradable scaffolds ; Carbonates ; Cartilage ; Cartilage - cytology ; Cartilage - drug effects ; Cattle ; Cell Adhesion - drug effects ; Cell Differentiation - drug effects ; Cell Proliferation - drug effects ; Cells, Cultured ; chondrocytes ; Chondrocytes - cytology ; Chondrocytes - drug effects ; Chondrocytes - physiology ; Construction ; Dioxanes - chemistry ; Elasticity ; Fibrillar Collagens - biosynthesis ; Fibrillar Collagens - secretion ; Glycosaminoglycans ; Glycosaminoglycans - biosynthesis ; Glycosaminoglycans - secretion ; Materials Testing ; Methacrylates - chemistry ; Microscopy, Electrochemical, Scanning ; Photochemical Processes ; Pliability ; poly(trimethylene carbonate) macromers ; Polymers - chemistry ; Porosity ; Scaffolds ; Spreads ; Stereolithography ; Tensile Strength ; Tissue engineering ; Tissue Engineering - methods ; Tissue Scaffolds</subject><ispartof>Macromolecular bioscience, 2013-12, Vol.13 (12), p.1711-1719</ispartof><rights>2013 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2013 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmabi.201300399$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmabi.201300399$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24214105$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schüller-Ravoo, Sigrid</creatorcontrib><creatorcontrib>Teixeira, Sandra M.</creatorcontrib><creatorcontrib>Feijen, Jan</creatorcontrib><creatorcontrib>Grijpma, Dirk W.</creatorcontrib><creatorcontrib>Poot, André A.</creatorcontrib><title>Flexible and Elastic Scaffolds for Cartilage Tissue Engineering Prepared by Stereolithography Using Poly(trimethylene carbonate)-Based Resins</title><title>Macromolecular bioscience</title><addtitle>Macromol. Biosci</addtitle><description>The aim of this study is to investigate the applicability of flexible and elastic poly(trimethylene carbonate) (PTMC) structures prepared by stereolithography as scaffolds for cartilage tissue engineering. A three‐armed methacrylated PTMC macromer with a molecular weight of 3100 g mol−1 is used to build designed scaffolds with a pore diameter of 350 ± 12 μm and a porosity of 54.0 ± 2.2%. Upon seeding of bovine chondrocytes in the scaffolds, the cells adhere and spread on the PTMC surface. After culturing for 6 weeks, also cells with a round morphology are present, indicative of the differentiated chondrocyte phenotype. Sulphated glycosaminoglycans and fibrillar collagens are deposited by the cells. During culturing for 6 weeks, the compression moduli of the constructs increases 50% to approximately 100 kPa. Stereolithography is a rapid prototyping technique that can be used to build tissue engineering scaffolds, with full control of pore architecture, pore size, and scaffold porosity. In this study, flexible and elastic poly(trimethylene carbonate) scaffolds suitable for cartilage tissue engineering are prepared by means of stereolithography.</description><subject>Animals</subject><subject>Biocompatible Materials - chemical synthesis</subject><subject>Biocompatible Materials - pharmacology</subject><subject>biodegradable scaffolds</subject><subject>Carbonates</subject><subject>Cartilage</subject><subject>Cartilage - cytology</subject><subject>Cartilage - drug effects</subject><subject>Cattle</subject><subject>Cell Adhesion - drug effects</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell Proliferation - drug effects</subject><subject>Cells, Cultured</subject><subject>chondrocytes</subject><subject>Chondrocytes - cytology</subject><subject>Chondrocytes - drug effects</subject><subject>Chondrocytes - physiology</subject><subject>Construction</subject><subject>Dioxanes - chemistry</subject><subject>Elasticity</subject><subject>Fibrillar Collagens - biosynthesis</subject><subject>Fibrillar Collagens - secretion</subject><subject>Glycosaminoglycans</subject><subject>Glycosaminoglycans - biosynthesis</subject><subject>Glycosaminoglycans - secretion</subject><subject>Materials Testing</subject><subject>Methacrylates - chemistry</subject><subject>Microscopy, Electrochemical, Scanning</subject><subject>Photochemical Processes</subject><subject>Pliability</subject><subject>poly(trimethylene carbonate) macromers</subject><subject>Polymers - chemistry</subject><subject>Porosity</subject><subject>Scaffolds</subject><subject>Spreads</subject><subject>Stereolithography</subject><subject>Tensile Strength</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds</subject><issn>1616-5187</issn><issn>1616-5195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU9P3DAQxaOqCCjl2mPlIz2E-l_s-AirhSIBpWVRj9bEmey69SaLnVXJh-h3bujSXDnNjOb3Rk_zsuwDo6eMUv55DZU_5ZQJSoUxb7JDppjKC2aKt1Nf6oPsXUo_KWW6NHw_O-CSM8locZj9uQj45KuABNqazAOk3jty76BpulAn0nSRzCD2PsASycKntEUyb5e-RYy-XZK7iBuIWJNqIPc9RuyC71fdMsJmNZCH9I_pwnDSR7_GfjUEbJE4iFXXQo-f8nNIo_o7jmR6n-01EBIev9Sj7OFivph9ya-_Xl7Nzq5zLwUzOS-dNJJWIJEzVmEFrlFaqlK7BiirKaiSG1S1AUdR1BUvVCFAidoB57UUR9nJ7u4mdo9bTL1d--QwBGix2ybLNDVMS23U66jS2khecPM6KrUejYw-R_TjC7qt1ljbzfgciIP9H8wImB3w2wccpj2j9jl2-xy7nWK3N2fnV9M0avOd1qcenyYtxF9WaaEL--P20t7Jbwt9Q6mV4i9Si7FU</recordid><startdate>201312</startdate><enddate>201312</enddate><creator>Schüller-Ravoo, Sigrid</creator><creator>Teixeira, Sandra M.</creator><creator>Feijen, Jan</creator><creator>Grijpma, Dirk W.</creator><creator>Poot, André A.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7QO</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>201312</creationdate><title>Flexible and Elastic Scaffolds for Cartilage Tissue Engineering Prepared by Stereolithography Using Poly(trimethylene carbonate)-Based Resins</title><author>Schüller-Ravoo, Sigrid ; Teixeira, Sandra M. ; Feijen, Jan ; Grijpma, Dirk W. ; Poot, André A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i4319-28c4940ba4e211bebacf674687cfa01d0a6829e6d9ac0e3db25653a63dca22d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Biocompatible Materials - chemical synthesis</topic><topic>Biocompatible Materials - pharmacology</topic><topic>biodegradable scaffolds</topic><topic>Carbonates</topic><topic>Cartilage</topic><topic>Cartilage - cytology</topic><topic>Cartilage - drug effects</topic><topic>Cattle</topic><topic>Cell Adhesion - drug effects</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell Proliferation - drug effects</topic><topic>Cells, Cultured</topic><topic>chondrocytes</topic><topic>Chondrocytes - cytology</topic><topic>Chondrocytes - drug effects</topic><topic>Chondrocytes - physiology</topic><topic>Construction</topic><topic>Dioxanes - chemistry</topic><topic>Elasticity</topic><topic>Fibrillar Collagens - biosynthesis</topic><topic>Fibrillar Collagens - secretion</topic><topic>Glycosaminoglycans</topic><topic>Glycosaminoglycans - biosynthesis</topic><topic>Glycosaminoglycans - secretion</topic><topic>Materials Testing</topic><topic>Methacrylates - chemistry</topic><topic>Microscopy, Electrochemical, Scanning</topic><topic>Photochemical Processes</topic><topic>Pliability</topic><topic>poly(trimethylene carbonate) macromers</topic><topic>Polymers - chemistry</topic><topic>Porosity</topic><topic>Scaffolds</topic><topic>Spreads</topic><topic>Stereolithography</topic><topic>Tensile Strength</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schüller-Ravoo, Sigrid</creatorcontrib><creatorcontrib>Teixeira, Sandra M.</creatorcontrib><creatorcontrib>Feijen, Jan</creatorcontrib><creatorcontrib>Grijpma, Dirk W.</creatorcontrib><creatorcontrib>Poot, André A.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology Research Abstracts</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Macromolecular bioscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schüller-Ravoo, Sigrid</au><au>Teixeira, Sandra M.</au><au>Feijen, Jan</au><au>Grijpma, Dirk W.</au><au>Poot, André A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flexible and Elastic Scaffolds for Cartilage Tissue Engineering Prepared by Stereolithography Using Poly(trimethylene carbonate)-Based Resins</atitle><jtitle>Macromolecular bioscience</jtitle><addtitle>Macromol. Biosci</addtitle><date>2013-12</date><risdate>2013</risdate><volume>13</volume><issue>12</issue><spage>1711</spage><epage>1719</epage><pages>1711-1719</pages><issn>1616-5187</issn><eissn>1616-5195</eissn><abstract>The aim of this study is to investigate the applicability of flexible and elastic poly(trimethylene carbonate) (PTMC) structures prepared by stereolithography as scaffolds for cartilage tissue engineering. A three‐armed methacrylated PTMC macromer with a molecular weight of 3100 g mol−1 is used to build designed scaffolds with a pore diameter of 350 ± 12 μm and a porosity of 54.0 ± 2.2%. Upon seeding of bovine chondrocytes in the scaffolds, the cells adhere and spread on the PTMC surface. After culturing for 6 weeks, also cells with a round morphology are present, indicative of the differentiated chondrocyte phenotype. Sulphated glycosaminoglycans and fibrillar collagens are deposited by the cells. During culturing for 6 weeks, the compression moduli of the constructs increases 50% to approximately 100 kPa. Stereolithography is a rapid prototyping technique that can be used to build tissue engineering scaffolds, with full control of pore architecture, pore size, and scaffold porosity. In this study, flexible and elastic poly(trimethylene carbonate) scaffolds suitable for cartilage tissue engineering are prepared by means of stereolithography.</abstract><cop>Germany</cop><pub>Blackwell Publishing Ltd</pub><pmid>24214105</pmid><doi>10.1002/mabi.201300399</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1616-5187
ispartof Macromolecular bioscience, 2013-12, Vol.13 (12), p.1711-1719
issn 1616-5187
1616-5195
language eng
recordid cdi_proquest_miscellaneous_1709174796
source MEDLINE; Wiley Journals
subjects Animals
Biocompatible Materials - chemical synthesis
Biocompatible Materials - pharmacology
biodegradable scaffolds
Carbonates
Cartilage
Cartilage - cytology
Cartilage - drug effects
Cattle
Cell Adhesion - drug effects
Cell Differentiation - drug effects
Cell Proliferation - drug effects
Cells, Cultured
chondrocytes
Chondrocytes - cytology
Chondrocytes - drug effects
Chondrocytes - physiology
Construction
Dioxanes - chemistry
Elasticity
Fibrillar Collagens - biosynthesis
Fibrillar Collagens - secretion
Glycosaminoglycans
Glycosaminoglycans - biosynthesis
Glycosaminoglycans - secretion
Materials Testing
Methacrylates - chemistry
Microscopy, Electrochemical, Scanning
Photochemical Processes
Pliability
poly(trimethylene carbonate) macromers
Polymers - chemistry
Porosity
Scaffolds
Spreads
Stereolithography
Tensile Strength
Tissue engineering
Tissue Engineering - methods
Tissue Scaffolds
title Flexible and Elastic Scaffolds for Cartilage Tissue Engineering Prepared by Stereolithography Using Poly(trimethylene carbonate)-Based Resins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A14%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flexible%20and%20Elastic%20Scaffolds%20for%20Cartilage%20Tissue%20Engineering%20Prepared%20by%20Stereolithography%20Using%20Poly(trimethylene%20carbonate)-Based%20Resins&rft.jtitle=Macromolecular%20bioscience&rft.au=Sch%C3%BCller-Ravoo,%20Sigrid&rft.date=2013-12&rft.volume=13&rft.issue=12&rft.spage=1711&rft.epage=1719&rft.pages=1711-1719&rft.issn=1616-5187&rft.eissn=1616-5195&rft_id=info:doi/10.1002/mabi.201300399&rft_dat=%3Cproquest_pubme%3E1709174796%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1477565468&rft_id=info:pmid/24214105&rfr_iscdi=true