Phenolic Profile and Antioxidant Activity of Extracts Prepared from Fermented Heat‐Stabilized Defatted Rice Bran

Heat‐stabilized, defatted rice bran (HDRB) serves as a potential source of phenolic compounds which have numerous purported health benefits. An estimated 70% of phenolics present in rice bran are esterified to the arabinoxylan residues of the cell walls. Release of such compounds could provide a val...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of food science 2014-11, Vol.79 (11), p.H2383-H2391
Hauptverfasser: Webber, Daniel M, Hettiarachchy, Navam S, Li, Ruiqi, Horax, Ronny, Theivendran, Sivarooban
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page H2391
container_issue 11
container_start_page H2383
container_title Journal of food science
container_volume 79
creator Webber, Daniel M
Hettiarachchy, Navam S
Li, Ruiqi
Horax, Ronny
Theivendran, Sivarooban
description Heat‐stabilized, defatted rice bran (HDRB) serves as a potential source of phenolic compounds which have numerous purported health benefits. An estimated 70% of phenolics present in rice bran are esterified to the arabinoxylan residues of the cell walls. Release of such compounds could provide a value‐added application for HDRB. The objective of this study was to extract and quantify phenolics from HDRB using fermentation technology. Out of 8 organisms selected for rice bran fermentation, Bacillus subtilis subspecies subtilis had the maximum phenolic release of 26.8 mg ferulic acid equivalents (FAE) per gram HDRB. Response surface methodology was used to further optimize the release of rice bran phenolics. An optimum of 28.6 mg FAE/g rice bran was predicted at 168 h, 0.01% inoculation level, and 100 mg HDRB/mL. Fermentation of HDRB for 96 h with B. subtilis subspecies subtilis resulted in a significant increase in phenolic yield, phenolic concentration, and radical scavenging capacity. Fermented rice bran had 4.86 mg gentistic acid, 1.38 mg caffeic acid, 6.03 mg syringic acid, 19.02 mg (‐)‐epicatechin, 4.08 mg p‐courmaric acid, 4.64 mg ferulic acid, 10.04 mg sinapic acid, and 17.59 mg benzoic acid per 100 g fermented extract compared to 0.65 mg p‐courmaric acid and 0.36 mg ferulic acid per 100 g nonfermented extract. The high phenolic content and antioxidant activity of fermented HDRB extract indicates that rice bran fermentation under optimized condition is a potential means of meeting the demand for an effective and affordable antioxidant.
doi_str_mv 10.1111/1750-3841.12658
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709172658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3491134881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6368-c6b71ba37b9bcc50120f4e06e479d422bcb3a91db1fd9c0e905630bb1c3af2a83</originalsourceid><addsrcrecordid>eNqNkctuEzEUhi0EoqGwZgcjsWGT1pexnVmmlzRAVSJCVXaW7bHBZWYcbAcSVjwCz8iT4NGkWbAplmzrHH_n97F_AJ4jeITyOEacwjGZlOgIYUYnD8Bon3kIRhBiPEao5AfgSYy3sI8JewwOMCWQc4pGICy-mM43TheL4K1rTCG7uph2yfmNq2WXiqlO7rtL28Lb4nyTgtQpZtisZDB1YYNvi5kJrelSDudGpj-_fi-TVK5xP3PmzFiZ-qMPTpviJMjuKXhkZRPNs91-CK5n5x9P5-PL9xdvTqeXY80Im-RVcaQk4apSWlOIMLSlgcyUvKpLjJVWRFaoVsjWlYamgpQRqBTSRFosJ-QQvB50V8F_W5uYROuiNk0jO-PXUSAOK8T7b7sfZflCzhnB_4HisiK5x1711T_orV-HLr-5pzDJViGYqeOB0sHHGIwVq-BaGbYCQdGbLHpLRW-pQLtuX-x016o19Z6_czUDbAB-ZEO39-mJt7Oz5Z3yeCh0MZnNvlCGr4Jxwqm4uboQJ-_gory5motPmX858FZ6IT8HF8X1EkNEYZ60Kin5C0eWyUE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1622317510</pqid></control><display><type>article</type><title>Phenolic Profile and Antioxidant Activity of Extracts Prepared from Fermented Heat‐Stabilized Defatted Rice Bran</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Webber, Daniel M ; Hettiarachchy, Navam S ; Li, Ruiqi ; Horax, Ronny ; Theivendran, Sivarooban</creator><creatorcontrib>Webber, Daniel M ; Hettiarachchy, Navam S ; Li, Ruiqi ; Horax, Ronny ; Theivendran, Sivarooban</creatorcontrib><description>Heat‐stabilized, defatted rice bran (HDRB) serves as a potential source of phenolic compounds which have numerous purported health benefits. An estimated 70% of phenolics present in rice bran are esterified to the arabinoxylan residues of the cell walls. Release of such compounds could provide a value‐added application for HDRB. The objective of this study was to extract and quantify phenolics from HDRB using fermentation technology. Out of 8 organisms selected for rice bran fermentation, Bacillus subtilis subspecies subtilis had the maximum phenolic release of 26.8 mg ferulic acid equivalents (FAE) per gram HDRB. Response surface methodology was used to further optimize the release of rice bran phenolics. An optimum of 28.6 mg FAE/g rice bran was predicted at 168 h, 0.01% inoculation level, and 100 mg HDRB/mL. Fermentation of HDRB for 96 h with B. subtilis subspecies subtilis resulted in a significant increase in phenolic yield, phenolic concentration, and radical scavenging capacity. Fermented rice bran had 4.86 mg gentistic acid, 1.38 mg caffeic acid, 6.03 mg syringic acid, 19.02 mg (‐)‐epicatechin, 4.08 mg p‐courmaric acid, 4.64 mg ferulic acid, 10.04 mg sinapic acid, and 17.59 mg benzoic acid per 100 g fermented extract compared to 0.65 mg p‐courmaric acid and 0.36 mg ferulic acid per 100 g nonfermented extract. The high phenolic content and antioxidant activity of fermented HDRB extract indicates that rice bran fermentation under optimized condition is a potential means of meeting the demand for an effective and affordable antioxidant.</description><identifier>ISSN: 0022-1147</identifier><identifier>EISSN: 1750-3841</identifier><identifier>DOI: 10.1111/1750-3841.12658</identifier><identifier>PMID: 25307751</identifier><identifier>CODEN: JFDSAZ</identifier><language>eng</language><publisher>United States: The Institute</publisher><subject>Acids ; Antioxidant ; antioxidant activity ; Antioxidants ; Antioxidants - analysis ; Antioxidants - pharmacology ; arabinoxylan ; Bacillus - classification ; Bacillus - metabolism ; Bacillus subtilis ; Bacillus subtilis - metabolism ; benzoic acid ; Benzoic Acid - analysis ; caffeic acid ; Caffeic Acids - analysis ; Catechin - analysis ; cell walls ; Chromatography, High Pressure Liquid ; Coumaric Acids - analysis ; Demand ; Dietary Fiber - analysis ; Dietary Fiber - pharmacology ; esterification ; Fermentation ; Ferulic acid ; Food science ; Gallic Acid - analogs &amp; derivatives ; Gallic Acid - analysis ; Hot Temperature ; Inoculation ; Lactobacillus acidophilus - metabolism ; Oryza - chemistry ; Oxidation-Reduction ; phenolics ; Phenols ; Phenols - analysis ; Phenols - pharmacology ; Plant Extracts - chemistry ; Propionates ; response surface methodology ; Rice ; rice bran ; Saccharomyces cerevisiae - metabolism ; Saccharomycopsis - metabolism ; sinapic acid ; syringic acid ; value added ; Walls</subject><ispartof>Journal of food science, 2014-11, Vol.79 (11), p.H2383-H2391</ispartof><rights>2014 Institute of Food Technologists</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6368-c6b71ba37b9bcc50120f4e06e479d422bcb3a91db1fd9c0e905630bb1c3af2a83</citedby><cites>FETCH-LOGICAL-c6368-c6b71ba37b9bcc50120f4e06e479d422bcb3a91db1fd9c0e905630bb1c3af2a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1750-3841.12658$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1750-3841.12658$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25307751$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Webber, Daniel M</creatorcontrib><creatorcontrib>Hettiarachchy, Navam S</creatorcontrib><creatorcontrib>Li, Ruiqi</creatorcontrib><creatorcontrib>Horax, Ronny</creatorcontrib><creatorcontrib>Theivendran, Sivarooban</creatorcontrib><title>Phenolic Profile and Antioxidant Activity of Extracts Prepared from Fermented Heat‐Stabilized Defatted Rice Bran</title><title>Journal of food science</title><addtitle>Journal of Food Science</addtitle><description>Heat‐stabilized, defatted rice bran (HDRB) serves as a potential source of phenolic compounds which have numerous purported health benefits. An estimated 70% of phenolics present in rice bran are esterified to the arabinoxylan residues of the cell walls. Release of such compounds could provide a value‐added application for HDRB. The objective of this study was to extract and quantify phenolics from HDRB using fermentation technology. Out of 8 organisms selected for rice bran fermentation, Bacillus subtilis subspecies subtilis had the maximum phenolic release of 26.8 mg ferulic acid equivalents (FAE) per gram HDRB. Response surface methodology was used to further optimize the release of rice bran phenolics. An optimum of 28.6 mg FAE/g rice bran was predicted at 168 h, 0.01% inoculation level, and 100 mg HDRB/mL. Fermentation of HDRB for 96 h with B. subtilis subspecies subtilis resulted in a significant increase in phenolic yield, phenolic concentration, and radical scavenging capacity. Fermented rice bran had 4.86 mg gentistic acid, 1.38 mg caffeic acid, 6.03 mg syringic acid, 19.02 mg (‐)‐epicatechin, 4.08 mg p‐courmaric acid, 4.64 mg ferulic acid, 10.04 mg sinapic acid, and 17.59 mg benzoic acid per 100 g fermented extract compared to 0.65 mg p‐courmaric acid and 0.36 mg ferulic acid per 100 g nonfermented extract. The high phenolic content and antioxidant activity of fermented HDRB extract indicates that rice bran fermentation under optimized condition is a potential means of meeting the demand for an effective and affordable antioxidant.</description><subject>Acids</subject><subject>Antioxidant</subject><subject>antioxidant activity</subject><subject>Antioxidants</subject><subject>Antioxidants - analysis</subject><subject>Antioxidants - pharmacology</subject><subject>arabinoxylan</subject><subject>Bacillus - classification</subject><subject>Bacillus - metabolism</subject><subject>Bacillus subtilis</subject><subject>Bacillus subtilis - metabolism</subject><subject>benzoic acid</subject><subject>Benzoic Acid - analysis</subject><subject>caffeic acid</subject><subject>Caffeic Acids - analysis</subject><subject>Catechin - analysis</subject><subject>cell walls</subject><subject>Chromatography, High Pressure Liquid</subject><subject>Coumaric Acids - analysis</subject><subject>Demand</subject><subject>Dietary Fiber - analysis</subject><subject>Dietary Fiber - pharmacology</subject><subject>esterification</subject><subject>Fermentation</subject><subject>Ferulic acid</subject><subject>Food science</subject><subject>Gallic Acid - analogs &amp; derivatives</subject><subject>Gallic Acid - analysis</subject><subject>Hot Temperature</subject><subject>Inoculation</subject><subject>Lactobacillus acidophilus - metabolism</subject><subject>Oryza - chemistry</subject><subject>Oxidation-Reduction</subject><subject>phenolics</subject><subject>Phenols</subject><subject>Phenols - analysis</subject><subject>Phenols - pharmacology</subject><subject>Plant Extracts - chemistry</subject><subject>Propionates</subject><subject>response surface methodology</subject><subject>Rice</subject><subject>rice bran</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomycopsis - metabolism</subject><subject>sinapic acid</subject><subject>syringic acid</subject><subject>value added</subject><subject>Walls</subject><issn>0022-1147</issn><issn>1750-3841</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkctuEzEUhi0EoqGwZgcjsWGT1pexnVmmlzRAVSJCVXaW7bHBZWYcbAcSVjwCz8iT4NGkWbAplmzrHH_n97F_AJ4jeITyOEacwjGZlOgIYUYnD8Bon3kIRhBiPEao5AfgSYy3sI8JewwOMCWQc4pGICy-mM43TheL4K1rTCG7uph2yfmNq2WXiqlO7rtL28Lb4nyTgtQpZtisZDB1YYNvi5kJrelSDudGpj-_fi-TVK5xP3PmzFiZ-qMPTpviJMjuKXhkZRPNs91-CK5n5x9P5-PL9xdvTqeXY80Im-RVcaQk4apSWlOIMLSlgcyUvKpLjJVWRFaoVsjWlYamgpQRqBTSRFosJ-QQvB50V8F_W5uYROuiNk0jO-PXUSAOK8T7b7sfZflCzhnB_4HisiK5x1711T_orV-HLr-5pzDJViGYqeOB0sHHGIwVq-BaGbYCQdGbLHpLRW-pQLtuX-x016o19Z6_czUDbAB-ZEO39-mJt7Oz5Z3yeCh0MZnNvlCGr4Jxwqm4uboQJ-_gory5motPmX858FZ6IT8HF8X1EkNEYZ60Kin5C0eWyUE</recordid><startdate>201411</startdate><enddate>201411</enddate><creator>Webber, Daniel M</creator><creator>Hettiarachchy, Navam S</creator><creator>Li, Ruiqi</creator><creator>Horax, Ronny</creator><creator>Theivendran, Sivarooban</creator><general>The Institute</general><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QR</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>201411</creationdate><title>Phenolic Profile and Antioxidant Activity of Extracts Prepared from Fermented Heat‐Stabilized Defatted Rice Bran</title><author>Webber, Daniel M ; Hettiarachchy, Navam S ; Li, Ruiqi ; Horax, Ronny ; Theivendran, Sivarooban</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6368-c6b71ba37b9bcc50120f4e06e479d422bcb3a91db1fd9c0e905630bb1c3af2a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acids</topic><topic>Antioxidant</topic><topic>antioxidant activity</topic><topic>Antioxidants</topic><topic>Antioxidants - analysis</topic><topic>Antioxidants - pharmacology</topic><topic>arabinoxylan</topic><topic>Bacillus - classification</topic><topic>Bacillus - metabolism</topic><topic>Bacillus subtilis</topic><topic>Bacillus subtilis - metabolism</topic><topic>benzoic acid</topic><topic>Benzoic Acid - analysis</topic><topic>caffeic acid</topic><topic>Caffeic Acids - analysis</topic><topic>Catechin - analysis</topic><topic>cell walls</topic><topic>Chromatography, High Pressure Liquid</topic><topic>Coumaric Acids - analysis</topic><topic>Demand</topic><topic>Dietary Fiber - analysis</topic><topic>Dietary Fiber - pharmacology</topic><topic>esterification</topic><topic>Fermentation</topic><topic>Ferulic acid</topic><topic>Food science</topic><topic>Gallic Acid - analogs &amp; derivatives</topic><topic>Gallic Acid - analysis</topic><topic>Hot Temperature</topic><topic>Inoculation</topic><topic>Lactobacillus acidophilus - metabolism</topic><topic>Oryza - chemistry</topic><topic>Oxidation-Reduction</topic><topic>phenolics</topic><topic>Phenols</topic><topic>Phenols - analysis</topic><topic>Phenols - pharmacology</topic><topic>Plant Extracts - chemistry</topic><topic>Propionates</topic><topic>response surface methodology</topic><topic>Rice</topic><topic>rice bran</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomycopsis - metabolism</topic><topic>sinapic acid</topic><topic>syringic acid</topic><topic>value added</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Webber, Daniel M</creatorcontrib><creatorcontrib>Hettiarachchy, Navam S</creatorcontrib><creatorcontrib>Li, Ruiqi</creatorcontrib><creatorcontrib>Horax, Ronny</creatorcontrib><creatorcontrib>Theivendran, Sivarooban</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of food science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Webber, Daniel M</au><au>Hettiarachchy, Navam S</au><au>Li, Ruiqi</au><au>Horax, Ronny</au><au>Theivendran, Sivarooban</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phenolic Profile and Antioxidant Activity of Extracts Prepared from Fermented Heat‐Stabilized Defatted Rice Bran</atitle><jtitle>Journal of food science</jtitle><addtitle>Journal of Food Science</addtitle><date>2014-11</date><risdate>2014</risdate><volume>79</volume><issue>11</issue><spage>H2383</spage><epage>H2391</epage><pages>H2383-H2391</pages><issn>0022-1147</issn><eissn>1750-3841</eissn><coden>JFDSAZ</coden><abstract>Heat‐stabilized, defatted rice bran (HDRB) serves as a potential source of phenolic compounds which have numerous purported health benefits. An estimated 70% of phenolics present in rice bran are esterified to the arabinoxylan residues of the cell walls. Release of such compounds could provide a value‐added application for HDRB. The objective of this study was to extract and quantify phenolics from HDRB using fermentation technology. Out of 8 organisms selected for rice bran fermentation, Bacillus subtilis subspecies subtilis had the maximum phenolic release of 26.8 mg ferulic acid equivalents (FAE) per gram HDRB. Response surface methodology was used to further optimize the release of rice bran phenolics. An optimum of 28.6 mg FAE/g rice bran was predicted at 168 h, 0.01% inoculation level, and 100 mg HDRB/mL. Fermentation of HDRB for 96 h with B. subtilis subspecies subtilis resulted in a significant increase in phenolic yield, phenolic concentration, and radical scavenging capacity. Fermented rice bran had 4.86 mg gentistic acid, 1.38 mg caffeic acid, 6.03 mg syringic acid, 19.02 mg (‐)‐epicatechin, 4.08 mg p‐courmaric acid, 4.64 mg ferulic acid, 10.04 mg sinapic acid, and 17.59 mg benzoic acid per 100 g fermented extract compared to 0.65 mg p‐courmaric acid and 0.36 mg ferulic acid per 100 g nonfermented extract. The high phenolic content and antioxidant activity of fermented HDRB extract indicates that rice bran fermentation under optimized condition is a potential means of meeting the demand for an effective and affordable antioxidant.</abstract><cop>United States</cop><pub>The Institute</pub><pmid>25307751</pmid><doi>10.1111/1750-3841.12658</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1147
ispartof Journal of food science, 2014-11, Vol.79 (11), p.H2383-H2391
issn 0022-1147
1750-3841
language eng
recordid cdi_proquest_miscellaneous_1709172658
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Acids
Antioxidant
antioxidant activity
Antioxidants
Antioxidants - analysis
Antioxidants - pharmacology
arabinoxylan
Bacillus - classification
Bacillus - metabolism
Bacillus subtilis
Bacillus subtilis - metabolism
benzoic acid
Benzoic Acid - analysis
caffeic acid
Caffeic Acids - analysis
Catechin - analysis
cell walls
Chromatography, High Pressure Liquid
Coumaric Acids - analysis
Demand
Dietary Fiber - analysis
Dietary Fiber - pharmacology
esterification
Fermentation
Ferulic acid
Food science
Gallic Acid - analogs & derivatives
Gallic Acid - analysis
Hot Temperature
Inoculation
Lactobacillus acidophilus - metabolism
Oryza - chemistry
Oxidation-Reduction
phenolics
Phenols
Phenols - analysis
Phenols - pharmacology
Plant Extracts - chemistry
Propionates
response surface methodology
Rice
rice bran
Saccharomyces cerevisiae - metabolism
Saccharomycopsis - metabolism
sinapic acid
syringic acid
value added
Walls
title Phenolic Profile and Antioxidant Activity of Extracts Prepared from Fermented Heat‐Stabilized Defatted Rice Bran
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T14%3A25%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phenolic%20Profile%20and%20Antioxidant%20Activity%20of%20Extracts%20Prepared%20from%20Fermented%20Heat%E2%80%90Stabilized%20Defatted%20Rice%20Bran&rft.jtitle=Journal%20of%20food%20science&rft.au=Webber,%20Daniel%20M&rft.date=2014-11&rft.volume=79&rft.issue=11&rft.spage=H2383&rft.epage=H2391&rft.pages=H2383-H2391&rft.issn=0022-1147&rft.eissn=1750-3841&rft.coden=JFDSAZ&rft_id=info:doi/10.1111/1750-3841.12658&rft_dat=%3Cproquest_cross%3E3491134881%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1622317510&rft_id=info:pmid/25307751&rfr_iscdi=true