The Evolution and Genetics of Herbicide Resistance in Weeds

The importance of various factors influencing the evolution of herbicide resistance in weeds is critically examined using population genetic models. The factors include gene mutation, initial frequency of resistance alleles, inheritance, weed fitness in the presence and absence of herbicide, mating...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Weed science 1996-01, Vol.44 (1), p.176-193
Hauptverfasser: Jasieniuk, Marie, Brûlé-Babel, Anita L., Morrison, Ian N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 193
container_issue 1
container_start_page 176
container_title Weed science
container_volume 44
creator Jasieniuk, Marie
Brûlé-Babel, Anita L.
Morrison, Ian N.
description The importance of various factors influencing the evolution of herbicide resistance in weeds is critically examined using population genetic models. The factors include gene mutation, initial frequency of resistance alleles, inheritance, weed fitness in the presence and absence of herbicide, mating system, and gene flow. Where weed infestations are heavy, the probability of selecting for resistance can be high even when the rate of mutation is low. Subsequent to the occurrence of a resistant mutant, repeated treatments with herbicides having the same mode of action can lead to the rapid evolution of a predominantly resistant population. At a given herbicide selection intensity, the initial frequency of resistance alleles determines the number of generations required to reach a specific frequency of resistant plants. The initial frequency of resistance alleles has a greater influence on the evolutionary process when herbicides impose weak selection, as opposed to very strong selection. Under selection, dominant resistance alleles increase in frequency more rapidly than recessive alleles in random mating or highly outcrossing weed populations. In highly self-fertilizing species, dominant and recessive resistance alleles increase in frequency at approximately the same rate. Gene flow through pollen or seed movement from resistant weed populations can provide a source of resistance alleles in previously susceptible populations. Because rates of gene flow are generally higher than rates of mutation, the time required to reach a high level of resistance in such situations is greatly reduced. Contrary to common misconception, gene flow from a susceptible population to a population undergoing resistance evolution is unlikely to slow the evolutionary process significantly. Accurate measurements of many factors that influence resistance evolution are difficult, if not impossible, to obtain experimentally. Thus, the use of models to predict times to resistance in specific situations is markedly limited. However, with appropriate assumptions, they can be invaluable in assessing the relative effectiveness of various management practices to avoid, or delay, the occurrence of herbicide resistance in weed populations.
doi_str_mv 10.1017/S0043174500093747
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_17082614</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0043174500093747</cupid><jstor_id>4045802</jstor_id><sourcerecordid>4045802</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-28f8a1b057a4e6f7d39f70b8ba5e25318745341c95d56563f463877a7a67fe6b3</originalsourceid><addsrcrecordid>eNp9kMtKw0AUhgdRsFYfQHGRlbvomcwtwZWU2goFwba4HCbJmTqlzdSZRPDtTWlxI7g6i--_HH5CrincU6DqYQ7AGVVcAEDBFFcnZECFgDRTojglgz1O9_ycXMS4BqAyo8WAPC4-MBl_-U3XOt8kpqmTCTbYuiom3iZTDKWrXI3JG0YXW9NUmLgmeUes4yU5s2YT8ep4h2T5PF6MpunsdfIyepqlFROyTbPc5oaWIJThKK2qWWEVlHlpBGaC0bz_inFaFaIWUkhmuWS5UkYZqSzKkg3J3SF3F_xnh7HVWxcr3GxMg76LmirIM0l5L6QHYRV8jAGt3gW3NeFbU9D7mfSfmXrP7cGzjq0PvwYOXOSQ9fjmgK3x2qyCi3o5L2QmaAY9ZMc-sy2Dq1eo174LTT_GP40_GgB49Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17082614</pqid></control><display><type>article</type><title>The Evolution and Genetics of Herbicide Resistance in Weeds</title><source>Jstor Complete Legacy</source><creator>Jasieniuk, Marie ; Brûlé-Babel, Anita L. ; Morrison, Ian N.</creator><creatorcontrib>Jasieniuk, Marie ; Brûlé-Babel, Anita L. ; Morrison, Ian N.</creatorcontrib><description>The importance of various factors influencing the evolution of herbicide resistance in weeds is critically examined using population genetic models. The factors include gene mutation, initial frequency of resistance alleles, inheritance, weed fitness in the presence and absence of herbicide, mating system, and gene flow. Where weed infestations are heavy, the probability of selecting for resistance can be high even when the rate of mutation is low. Subsequent to the occurrence of a resistant mutant, repeated treatments with herbicides having the same mode of action can lead to the rapid evolution of a predominantly resistant population. At a given herbicide selection intensity, the initial frequency of resistance alleles determines the number of generations required to reach a specific frequency of resistant plants. The initial frequency of resistance alleles has a greater influence on the evolutionary process when herbicides impose weak selection, as opposed to very strong selection. Under selection, dominant resistance alleles increase in frequency more rapidly than recessive alleles in random mating or highly outcrossing weed populations. In highly self-fertilizing species, dominant and recessive resistance alleles increase in frequency at approximately the same rate. Gene flow through pollen or seed movement from resistant weed populations can provide a source of resistance alleles in previously susceptible populations. Because rates of gene flow are generally higher than rates of mutation, the time required to reach a high level of resistance in such situations is greatly reduced. Contrary to common misconception, gene flow from a susceptible population to a population undergoing resistance evolution is unlikely to slow the evolutionary process significantly. Accurate measurements of many factors that influence resistance evolution are difficult, if not impossible, to obtain experimentally. Thus, the use of models to predict times to resistance in specific situations is markedly limited. However, with appropriate assumptions, they can be invaluable in assessing the relative effectiveness of various management practices to avoid, or delay, the occurrence of herbicide resistance in weed populations.</description><identifier>ISSN: 0043-1745</identifier><identifier>EISSN: 1550-2759</identifier><identifier>DOI: 10.1017/S0043174500093747</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Aboveground biomass ; Alleles ; Biomass production ; Ecological competition ; EVOLUCION ; EVOLUTION ; GENE ; GENES ; Genetic mutation ; GENETICA ; GENETICA DE POBLACIONES ; GENETIQUE ; GENETIQUE DES POPULATIONS ; HERBICIDAS ; HERBICIDE ; Herbicide resistance ; Herbicides ; HEREDITE ; HEREDITE CYTOPLASMIQUE ; HERENCIA CITOPLASMICA ; HERENCIA GENETICA ; MALEZAS ; MAUVAISE HERBE ; METHODE D'ACCOUPLEMENT ; MODELE ; MODELOS ; MUTACION ; MUTANT ; MUTANTES ; MUTATION ; Plants ; RESISTANCE AUX PRODUITS CHIMIQUES ; RESISTANCE INDUITE ; RESISTENCIA A PRODUCTOS QUIMICOS ; RESISTENCIA INDUCIDA ; SELECCION ; SELECTION ; SISTEMAS DE APAREAMIENTO ; Special Topics ; Triazines</subject><ispartof>Weed science, 1996-01, Vol.44 (1), p.176-193</ispartof><rights>Copyright © 1996 by the Weed Science Society of America</rights><rights>Copyright 1996 The Weed Science Society of America</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-28f8a1b057a4e6f7d39f70b8ba5e25318745341c95d56563f463877a7a67fe6b3</citedby><cites>FETCH-LOGICAL-c356t-28f8a1b057a4e6f7d39f70b8ba5e25318745341c95d56563f463877a7a67fe6b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4045802$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4045802$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,27903,27904,57995,58228</link.rule.ids></links><search><creatorcontrib>Jasieniuk, Marie</creatorcontrib><creatorcontrib>Brûlé-Babel, Anita L.</creatorcontrib><creatorcontrib>Morrison, Ian N.</creatorcontrib><title>The Evolution and Genetics of Herbicide Resistance in Weeds</title><title>Weed science</title><addtitle>Weed sci</addtitle><description>The importance of various factors influencing the evolution of herbicide resistance in weeds is critically examined using population genetic models. The factors include gene mutation, initial frequency of resistance alleles, inheritance, weed fitness in the presence and absence of herbicide, mating system, and gene flow. Where weed infestations are heavy, the probability of selecting for resistance can be high even when the rate of mutation is low. Subsequent to the occurrence of a resistant mutant, repeated treatments with herbicides having the same mode of action can lead to the rapid evolution of a predominantly resistant population. At a given herbicide selection intensity, the initial frequency of resistance alleles determines the number of generations required to reach a specific frequency of resistant plants. The initial frequency of resistance alleles has a greater influence on the evolutionary process when herbicides impose weak selection, as opposed to very strong selection. Under selection, dominant resistance alleles increase in frequency more rapidly than recessive alleles in random mating or highly outcrossing weed populations. In highly self-fertilizing species, dominant and recessive resistance alleles increase in frequency at approximately the same rate. Gene flow through pollen or seed movement from resistant weed populations can provide a source of resistance alleles in previously susceptible populations. Because rates of gene flow are generally higher than rates of mutation, the time required to reach a high level of resistance in such situations is greatly reduced. Contrary to common misconception, gene flow from a susceptible population to a population undergoing resistance evolution is unlikely to slow the evolutionary process significantly. Accurate measurements of many factors that influence resistance evolution are difficult, if not impossible, to obtain experimentally. Thus, the use of models to predict times to resistance in specific situations is markedly limited. However, with appropriate assumptions, they can be invaluable in assessing the relative effectiveness of various management practices to avoid, or delay, the occurrence of herbicide resistance in weed populations.</description><subject>Aboveground biomass</subject><subject>Alleles</subject><subject>Biomass production</subject><subject>Ecological competition</subject><subject>EVOLUCION</subject><subject>EVOLUTION</subject><subject>GENE</subject><subject>GENES</subject><subject>Genetic mutation</subject><subject>GENETICA</subject><subject>GENETICA DE POBLACIONES</subject><subject>GENETIQUE</subject><subject>GENETIQUE DES POPULATIONS</subject><subject>HERBICIDAS</subject><subject>HERBICIDE</subject><subject>Herbicide resistance</subject><subject>Herbicides</subject><subject>HEREDITE</subject><subject>HEREDITE CYTOPLASMIQUE</subject><subject>HERENCIA CITOPLASMICA</subject><subject>HERENCIA GENETICA</subject><subject>MALEZAS</subject><subject>MAUVAISE HERBE</subject><subject>METHODE D'ACCOUPLEMENT</subject><subject>MODELE</subject><subject>MODELOS</subject><subject>MUTACION</subject><subject>MUTANT</subject><subject>MUTANTES</subject><subject>MUTATION</subject><subject>Plants</subject><subject>RESISTANCE AUX PRODUITS CHIMIQUES</subject><subject>RESISTANCE INDUITE</subject><subject>RESISTENCIA A PRODUCTOS QUIMICOS</subject><subject>RESISTENCIA INDUCIDA</subject><subject>SELECCION</subject><subject>SELECTION</subject><subject>SISTEMAS DE APAREAMIENTO</subject><subject>Special Topics</subject><subject>Triazines</subject><issn>0043-1745</issn><issn>1550-2759</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKw0AUhgdRsFYfQHGRlbvomcwtwZWU2goFwba4HCbJmTqlzdSZRPDtTWlxI7g6i--_HH5CrincU6DqYQ7AGVVcAEDBFFcnZECFgDRTojglgz1O9_ycXMS4BqAyo8WAPC4-MBl_-U3XOt8kpqmTCTbYuiom3iZTDKWrXI3JG0YXW9NUmLgmeUes4yU5s2YT8ep4h2T5PF6MpunsdfIyepqlFROyTbPc5oaWIJThKK2qWWEVlHlpBGaC0bz_inFaFaIWUkhmuWS5UkYZqSzKkg3J3SF3F_xnh7HVWxcr3GxMg76LmirIM0l5L6QHYRV8jAGt3gW3NeFbU9D7mfSfmXrP7cGzjq0PvwYOXOSQ9fjmgK3x2qyCi3o5L2QmaAY9ZMc-sy2Dq1eo174LTT_GP40_GgB49Q</recordid><startdate>19960101</startdate><enddate>19960101</enddate><creator>Jasieniuk, Marie</creator><creator>Brûlé-Babel, Anita L.</creator><creator>Morrison, Ian N.</creator><general>Cambridge University Press</general><general>Weed Science Society of America</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>19960101</creationdate><title>The Evolution and Genetics of Herbicide Resistance in Weeds</title><author>Jasieniuk, Marie ; Brûlé-Babel, Anita L. ; Morrison, Ian N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-28f8a1b057a4e6f7d39f70b8ba5e25318745341c95d56563f463877a7a67fe6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Aboveground biomass</topic><topic>Alleles</topic><topic>Biomass production</topic><topic>Ecological competition</topic><topic>EVOLUCION</topic><topic>EVOLUTION</topic><topic>GENE</topic><topic>GENES</topic><topic>Genetic mutation</topic><topic>GENETICA</topic><topic>GENETICA DE POBLACIONES</topic><topic>GENETIQUE</topic><topic>GENETIQUE DES POPULATIONS</topic><topic>HERBICIDAS</topic><topic>HERBICIDE</topic><topic>Herbicide resistance</topic><topic>Herbicides</topic><topic>HEREDITE</topic><topic>HEREDITE CYTOPLASMIQUE</topic><topic>HERENCIA CITOPLASMICA</topic><topic>HERENCIA GENETICA</topic><topic>MALEZAS</topic><topic>MAUVAISE HERBE</topic><topic>METHODE D'ACCOUPLEMENT</topic><topic>MODELE</topic><topic>MODELOS</topic><topic>MUTACION</topic><topic>MUTANT</topic><topic>MUTANTES</topic><topic>MUTATION</topic><topic>Plants</topic><topic>RESISTANCE AUX PRODUITS CHIMIQUES</topic><topic>RESISTANCE INDUITE</topic><topic>RESISTENCIA A PRODUCTOS QUIMICOS</topic><topic>RESISTENCIA INDUCIDA</topic><topic>SELECCION</topic><topic>SELECTION</topic><topic>SISTEMAS DE APAREAMIENTO</topic><topic>Special Topics</topic><topic>Triazines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jasieniuk, Marie</creatorcontrib><creatorcontrib>Brûlé-Babel, Anita L.</creatorcontrib><creatorcontrib>Morrison, Ian N.</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Weed science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jasieniuk, Marie</au><au>Brûlé-Babel, Anita L.</au><au>Morrison, Ian N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Evolution and Genetics of Herbicide Resistance in Weeds</atitle><jtitle>Weed science</jtitle><addtitle>Weed sci</addtitle><date>1996-01-01</date><risdate>1996</risdate><volume>44</volume><issue>1</issue><spage>176</spage><epage>193</epage><pages>176-193</pages><issn>0043-1745</issn><eissn>1550-2759</eissn><abstract>The importance of various factors influencing the evolution of herbicide resistance in weeds is critically examined using population genetic models. The factors include gene mutation, initial frequency of resistance alleles, inheritance, weed fitness in the presence and absence of herbicide, mating system, and gene flow. Where weed infestations are heavy, the probability of selecting for resistance can be high even when the rate of mutation is low. Subsequent to the occurrence of a resistant mutant, repeated treatments with herbicides having the same mode of action can lead to the rapid evolution of a predominantly resistant population. At a given herbicide selection intensity, the initial frequency of resistance alleles determines the number of generations required to reach a specific frequency of resistant plants. The initial frequency of resistance alleles has a greater influence on the evolutionary process when herbicides impose weak selection, as opposed to very strong selection. Under selection, dominant resistance alleles increase in frequency more rapidly than recessive alleles in random mating or highly outcrossing weed populations. In highly self-fertilizing species, dominant and recessive resistance alleles increase in frequency at approximately the same rate. Gene flow through pollen or seed movement from resistant weed populations can provide a source of resistance alleles in previously susceptible populations. Because rates of gene flow are generally higher than rates of mutation, the time required to reach a high level of resistance in such situations is greatly reduced. Contrary to common misconception, gene flow from a susceptible population to a population undergoing resistance evolution is unlikely to slow the evolutionary process significantly. Accurate measurements of many factors that influence resistance evolution are difficult, if not impossible, to obtain experimentally. Thus, the use of models to predict times to resistance in specific situations is markedly limited. However, with appropriate assumptions, they can be invaluable in assessing the relative effectiveness of various management practices to avoid, or delay, the occurrence of herbicide resistance in weed populations.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0043174500093747</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0043-1745
ispartof Weed science, 1996-01, Vol.44 (1), p.176-193
issn 0043-1745
1550-2759
language eng
recordid cdi_proquest_miscellaneous_17082614
source Jstor Complete Legacy
subjects Aboveground biomass
Alleles
Biomass production
Ecological competition
EVOLUCION
EVOLUTION
GENE
GENES
Genetic mutation
GENETICA
GENETICA DE POBLACIONES
GENETIQUE
GENETIQUE DES POPULATIONS
HERBICIDAS
HERBICIDE
Herbicide resistance
Herbicides
HEREDITE
HEREDITE CYTOPLASMIQUE
HERENCIA CITOPLASMICA
HERENCIA GENETICA
MALEZAS
MAUVAISE HERBE
METHODE D'ACCOUPLEMENT
MODELE
MODELOS
MUTACION
MUTANT
MUTANTES
MUTATION
Plants
RESISTANCE AUX PRODUITS CHIMIQUES
RESISTANCE INDUITE
RESISTENCIA A PRODUCTOS QUIMICOS
RESISTENCIA INDUCIDA
SELECCION
SELECTION
SISTEMAS DE APAREAMIENTO
Special Topics
Triazines
title The Evolution and Genetics of Herbicide Resistance in Weeds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T12%3A23%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Evolution%20and%20Genetics%20of%20Herbicide%20Resistance%20in%20Weeds&rft.jtitle=Weed%20science&rft.au=Jasieniuk,%20Marie&rft.date=1996-01-01&rft.volume=44&rft.issue=1&rft.spage=176&rft.epage=193&rft.pages=176-193&rft.issn=0043-1745&rft.eissn=1550-2759&rft_id=info:doi/10.1017/S0043174500093747&rft_dat=%3Cjstor_proqu%3E4045802%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17082614&rft_id=info:pmid/&rft_cupid=10_1017_S0043174500093747&rft_jstor_id=4045802&rfr_iscdi=true