Automated theorem proving
Automated theorem proving is the use of computers to prove or disprove mathematical or logical statements. Such statements can express properties of hardware or software systems, or facts about the world that are relevant for applications such as natural language processing and planning. A brief int...
Gespeichert in:
Veröffentlicht in: | Wiley interdisciplinary reviews. Cognitive science 2014-03, Vol.5 (2), p.115-128 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 128 |
---|---|
container_issue | 2 |
container_start_page | 115 |
container_title | Wiley interdisciplinary reviews. Cognitive science |
container_volume | 5 |
creator | Plaisted, David A. |
description | Automated theorem proving is the use of computers to prove or disprove mathematical or logical statements. Such statements can express properties of hardware or software systems, or facts about the world that are relevant for applications such as natural language processing and planning. A brief introduction to propositional and first‐order logic is given, along with some of the main methods of automated theorem proving in these logics. These methods of theorem proving include resolution, Davis and Putnam‐style approaches, and others. Methods for handling the equality axioms are also presented. Methods of theorem proving in propositional logic are presented first, and then methods for first‐order logic. WIREs Cogn Sci 2014, 5:115–128. doi: 10.1002/wcs.1269
This article is categorized under:
Computer Science > Artificial Intelligence
Philosophy > Artificial Intelligence
Philosophy > Knowledge and Belief |
doi_str_mv | 10.1002/wcs.1269 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1707559158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1913729168</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3489-cbfe5f81fa37400edeada672fb68ab64382e5d2bdc50ed7d31e694a01d00069f3</originalsourceid><addsrcrecordid>eNp1kM1LwzAYh4MoTubAqxcZePHSmY_m67hNN8Whhyk7hrRJtXNdZ9I699-bsTpBMATyQh6e98cPgDMEewhCfL1OfQ9hJg_ACZJERhQKdrifuWiBjvdzGA7BQghyDFqYERiHewLO-3VVFrqyplu92dLZorty5We-fD0FR5leeNtp3jZ4Gd0-D--iydP4ftifRCmJhYzSJLM0EyjThMcQWmO10YzjLGFCJywmAltqcGJSGj65IcgyGWuITAjEZEba4GrnDXs_ausrVeQ-tYuFXtqy9gpxyCmViIqAXv5B52XtliGdQhIRjiVi4leYutJ7ZzO1cnmh3UYhqLaNqdCY2jYW0ItGWCeFNXvwp58ARDtgnS_s5l-Rmg2njbDhc1_Zrz2v3btinHCqZo9jNaODm-loPFAP5BsaUYFZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1913729168</pqid></control><display><type>article</type><title>Automated theorem proving</title><source>Access via Wiley Online Library</source><creator>Plaisted, David A.</creator><creatorcontrib>Plaisted, David A.</creatorcontrib><description>Automated theorem proving is the use of computers to prove or disprove mathematical or logical statements. Such statements can express properties of hardware or software systems, or facts about the world that are relevant for applications such as natural language processing and planning. A brief introduction to propositional and first‐order logic is given, along with some of the main methods of automated theorem proving in these logics. These methods of theorem proving include resolution, Davis and Putnam‐style approaches, and others. Methods for handling the equality axioms are also presented. Methods of theorem proving in propositional logic are presented first, and then methods for first‐order logic. WIREs Cogn Sci 2014, 5:115–128. doi: 10.1002/wcs.1269
This article is categorized under:
Computer Science > Artificial Intelligence
Philosophy > Artificial Intelligence
Philosophy > Knowledge and Belief</description><identifier>ISSN: 1939-5078</identifier><identifier>EISSN: 1939-5086</identifier><identifier>DOI: 10.1002/wcs.1269</identifier><identifier>PMID: 26304304</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Automation ; Decision support systems ; Logic programming</subject><ispartof>Wiley interdisciplinary reviews. Cognitive science, 2014-03, Vol.5 (2), p.115-128</ispartof><rights>2014 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3489-cbfe5f81fa37400edeada672fb68ab64382e5d2bdc50ed7d31e694a01d00069f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fwcs.1269$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fwcs.1269$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26304304$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Plaisted, David A.</creatorcontrib><title>Automated theorem proving</title><title>Wiley interdisciplinary reviews. Cognitive science</title><addtitle>WIREs Cogn Sci</addtitle><description>Automated theorem proving is the use of computers to prove or disprove mathematical or logical statements. Such statements can express properties of hardware or software systems, or facts about the world that are relevant for applications such as natural language processing and planning. A brief introduction to propositional and first‐order logic is given, along with some of the main methods of automated theorem proving in these logics. These methods of theorem proving include resolution, Davis and Putnam‐style approaches, and others. Methods for handling the equality axioms are also presented. Methods of theorem proving in propositional logic are presented first, and then methods for first‐order logic. WIREs Cogn Sci 2014, 5:115–128. doi: 10.1002/wcs.1269
This article is categorized under:
Computer Science > Artificial Intelligence
Philosophy > Artificial Intelligence
Philosophy > Knowledge and Belief</description><subject>Automation</subject><subject>Decision support systems</subject><subject>Logic programming</subject><issn>1939-5078</issn><issn>1939-5086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LwzAYh4MoTubAqxcZePHSmY_m67hNN8Whhyk7hrRJtXNdZ9I699-bsTpBMATyQh6e98cPgDMEewhCfL1OfQ9hJg_ACZJERhQKdrifuWiBjvdzGA7BQghyDFqYERiHewLO-3VVFrqyplu92dLZorty5We-fD0FR5leeNtp3jZ4Gd0-D--iydP4ftifRCmJhYzSJLM0EyjThMcQWmO10YzjLGFCJywmAltqcGJSGj65IcgyGWuITAjEZEba4GrnDXs_ausrVeQ-tYuFXtqy9gpxyCmViIqAXv5B52XtliGdQhIRjiVi4leYutJ7ZzO1cnmh3UYhqLaNqdCY2jYW0ItGWCeFNXvwp58ARDtgnS_s5l-Rmg2njbDhc1_Zrz2v3btinHCqZo9jNaODm-loPFAP5BsaUYFZ</recordid><startdate>201403</startdate><enddate>201403</enddate><creator>Plaisted, David A.</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201403</creationdate><title>Automated theorem proving</title><author>Plaisted, David A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3489-cbfe5f81fa37400edeada672fb68ab64382e5d2bdc50ed7d31e694a01d00069f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Automation</topic><topic>Decision support systems</topic><topic>Logic programming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Plaisted, David A.</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Wiley interdisciplinary reviews. Cognitive science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Plaisted, David A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated theorem proving</atitle><jtitle>Wiley interdisciplinary reviews. Cognitive science</jtitle><addtitle>WIREs Cogn Sci</addtitle><date>2014-03</date><risdate>2014</risdate><volume>5</volume><issue>2</issue><spage>115</spage><epage>128</epage><pages>115-128</pages><issn>1939-5078</issn><eissn>1939-5086</eissn><abstract>Automated theorem proving is the use of computers to prove or disprove mathematical or logical statements. Such statements can express properties of hardware or software systems, or facts about the world that are relevant for applications such as natural language processing and planning. A brief introduction to propositional and first‐order logic is given, along with some of the main methods of automated theorem proving in these logics. These methods of theorem proving include resolution, Davis and Putnam‐style approaches, and others. Methods for handling the equality axioms are also presented. Methods of theorem proving in propositional logic are presented first, and then methods for first‐order logic. WIREs Cogn Sci 2014, 5:115–128. doi: 10.1002/wcs.1269
This article is categorized under:
Computer Science > Artificial Intelligence
Philosophy > Artificial Intelligence
Philosophy > Knowledge and Belief</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>26304304</pmid><doi>10.1002/wcs.1269</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-5078 |
ispartof | Wiley interdisciplinary reviews. Cognitive science, 2014-03, Vol.5 (2), p.115-128 |
issn | 1939-5078 1939-5086 |
language | eng |
recordid | cdi_proquest_miscellaneous_1707559158 |
source | Access via Wiley Online Library |
subjects | Automation Decision support systems Logic programming |
title | Automated theorem proving |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A04%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20theorem%20proving&rft.jtitle=Wiley%20interdisciplinary%20reviews.%20Cognitive%20science&rft.au=Plaisted,%20David%20A.&rft.date=2014-03&rft.volume=5&rft.issue=2&rft.spage=115&rft.epage=128&rft.pages=115-128&rft.issn=1939-5078&rft.eissn=1939-5086&rft_id=info:doi/10.1002/wcs.1269&rft_dat=%3Cproquest_cross%3E1913729168%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1913729168&rft_id=info:pmid/26304304&rfr_iscdi=true |