Automated theorem proving

Automated theorem proving is the use of computers to prove or disprove mathematical or logical statements. Such statements can express properties of hardware or software systems, or facts about the world that are relevant for applications such as natural language processing and planning. A brief int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wiley interdisciplinary reviews. Cognitive science 2014-03, Vol.5 (2), p.115-128
1. Verfasser: Plaisted, David A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 128
container_issue 2
container_start_page 115
container_title Wiley interdisciplinary reviews. Cognitive science
container_volume 5
creator Plaisted, David A.
description Automated theorem proving is the use of computers to prove or disprove mathematical or logical statements. Such statements can express properties of hardware or software systems, or facts about the world that are relevant for applications such as natural language processing and planning. A brief introduction to propositional and first‐order logic is given, along with some of the main methods of automated theorem proving in these logics. These methods of theorem proving include resolution, Davis and Putnam‐style approaches, and others. Methods for handling the equality axioms are also presented. Methods of theorem proving in propositional logic are presented first, and then methods for first‐order logic. WIREs Cogn Sci 2014, 5:115–128. doi: 10.1002/wcs.1269 This article is categorized under: Computer Science > Artificial Intelligence Philosophy > Artificial Intelligence Philosophy > Knowledge and Belief
doi_str_mv 10.1002/wcs.1269
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1707559158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1913729168</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3489-cbfe5f81fa37400edeada672fb68ab64382e5d2bdc50ed7d31e694a01d00069f3</originalsourceid><addsrcrecordid>eNp1kM1LwzAYh4MoTubAqxcZePHSmY_m67hNN8Whhyk7hrRJtXNdZ9I699-bsTpBMATyQh6e98cPgDMEewhCfL1OfQ9hJg_ACZJERhQKdrifuWiBjvdzGA7BQghyDFqYERiHewLO-3VVFrqyplu92dLZorty5We-fD0FR5leeNtp3jZ4Gd0-D--iydP4ftifRCmJhYzSJLM0EyjThMcQWmO10YzjLGFCJywmAltqcGJSGj65IcgyGWuITAjEZEba4GrnDXs_ausrVeQ-tYuFXtqy9gpxyCmViIqAXv5B52XtliGdQhIRjiVi4leYutJ7ZzO1cnmh3UYhqLaNqdCY2jYW0ItGWCeFNXvwp58ARDtgnS_s5l-Rmg2njbDhc1_Zrz2v3btinHCqZo9jNaODm-loPFAP5BsaUYFZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1913729168</pqid></control><display><type>article</type><title>Automated theorem proving</title><source>Access via Wiley Online Library</source><creator>Plaisted, David A.</creator><creatorcontrib>Plaisted, David A.</creatorcontrib><description>Automated theorem proving is the use of computers to prove or disprove mathematical or logical statements. Such statements can express properties of hardware or software systems, or facts about the world that are relevant for applications such as natural language processing and planning. A brief introduction to propositional and first‐order logic is given, along with some of the main methods of automated theorem proving in these logics. These methods of theorem proving include resolution, Davis and Putnam‐style approaches, and others. Methods for handling the equality axioms are also presented. Methods of theorem proving in propositional logic are presented first, and then methods for first‐order logic. WIREs Cogn Sci 2014, 5:115–128. doi: 10.1002/wcs.1269 This article is categorized under: Computer Science &gt; Artificial Intelligence Philosophy &gt; Artificial Intelligence Philosophy &gt; Knowledge and Belief</description><identifier>ISSN: 1939-5078</identifier><identifier>EISSN: 1939-5086</identifier><identifier>DOI: 10.1002/wcs.1269</identifier><identifier>PMID: 26304304</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Automation ; Decision support systems ; Logic programming</subject><ispartof>Wiley interdisciplinary reviews. Cognitive science, 2014-03, Vol.5 (2), p.115-128</ispartof><rights>2014 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3489-cbfe5f81fa37400edeada672fb68ab64382e5d2bdc50ed7d31e694a01d00069f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fwcs.1269$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fwcs.1269$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26304304$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Plaisted, David A.</creatorcontrib><title>Automated theorem proving</title><title>Wiley interdisciplinary reviews. Cognitive science</title><addtitle>WIREs Cogn Sci</addtitle><description>Automated theorem proving is the use of computers to prove or disprove mathematical or logical statements. Such statements can express properties of hardware or software systems, or facts about the world that are relevant for applications such as natural language processing and planning. A brief introduction to propositional and first‐order logic is given, along with some of the main methods of automated theorem proving in these logics. These methods of theorem proving include resolution, Davis and Putnam‐style approaches, and others. Methods for handling the equality axioms are also presented. Methods of theorem proving in propositional logic are presented first, and then methods for first‐order logic. WIREs Cogn Sci 2014, 5:115–128. doi: 10.1002/wcs.1269 This article is categorized under: Computer Science &gt; Artificial Intelligence Philosophy &gt; Artificial Intelligence Philosophy &gt; Knowledge and Belief</description><subject>Automation</subject><subject>Decision support systems</subject><subject>Logic programming</subject><issn>1939-5078</issn><issn>1939-5086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LwzAYh4MoTubAqxcZePHSmY_m67hNN8Whhyk7hrRJtXNdZ9I699-bsTpBMATyQh6e98cPgDMEewhCfL1OfQ9hJg_ACZJERhQKdrifuWiBjvdzGA7BQghyDFqYERiHewLO-3VVFrqyplu92dLZorty5We-fD0FR5leeNtp3jZ4Gd0-D--iydP4ftifRCmJhYzSJLM0EyjThMcQWmO10YzjLGFCJywmAltqcGJSGj65IcgyGWuITAjEZEba4GrnDXs_ausrVeQ-tYuFXtqy9gpxyCmViIqAXv5B52XtliGdQhIRjiVi4leYutJ7ZzO1cnmh3UYhqLaNqdCY2jYW0ItGWCeFNXvwp58ARDtgnS_s5l-Rmg2njbDhc1_Zrz2v3btinHCqZo9jNaODm-loPFAP5BsaUYFZ</recordid><startdate>201403</startdate><enddate>201403</enddate><creator>Plaisted, David A.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201403</creationdate><title>Automated theorem proving</title><author>Plaisted, David A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3489-cbfe5f81fa37400edeada672fb68ab64382e5d2bdc50ed7d31e694a01d00069f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Automation</topic><topic>Decision support systems</topic><topic>Logic programming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Plaisted, David A.</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Wiley interdisciplinary reviews. Cognitive science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Plaisted, David A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated theorem proving</atitle><jtitle>Wiley interdisciplinary reviews. Cognitive science</jtitle><addtitle>WIREs Cogn Sci</addtitle><date>2014-03</date><risdate>2014</risdate><volume>5</volume><issue>2</issue><spage>115</spage><epage>128</epage><pages>115-128</pages><issn>1939-5078</issn><eissn>1939-5086</eissn><abstract>Automated theorem proving is the use of computers to prove or disprove mathematical or logical statements. Such statements can express properties of hardware or software systems, or facts about the world that are relevant for applications such as natural language processing and planning. A brief introduction to propositional and first‐order logic is given, along with some of the main methods of automated theorem proving in these logics. These methods of theorem proving include resolution, Davis and Putnam‐style approaches, and others. Methods for handling the equality axioms are also presented. Methods of theorem proving in propositional logic are presented first, and then methods for first‐order logic. WIREs Cogn Sci 2014, 5:115–128. doi: 10.1002/wcs.1269 This article is categorized under: Computer Science &gt; Artificial Intelligence Philosophy &gt; Artificial Intelligence Philosophy &gt; Knowledge and Belief</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>26304304</pmid><doi>10.1002/wcs.1269</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1939-5078
ispartof Wiley interdisciplinary reviews. Cognitive science, 2014-03, Vol.5 (2), p.115-128
issn 1939-5078
1939-5086
language eng
recordid cdi_proquest_miscellaneous_1707559158
source Access via Wiley Online Library
subjects Automation
Decision support systems
Logic programming
title Automated theorem proving
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A04%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20theorem%20proving&rft.jtitle=Wiley%20interdisciplinary%20reviews.%20Cognitive%20science&rft.au=Plaisted,%20David%20A.&rft.date=2014-03&rft.volume=5&rft.issue=2&rft.spage=115&rft.epage=128&rft.pages=115-128&rft.issn=1939-5078&rft.eissn=1939-5086&rft_id=info:doi/10.1002/wcs.1269&rft_dat=%3Cproquest_cross%3E1913729168%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1913729168&rft_id=info:pmid/26304304&rfr_iscdi=true