Ortho-substituted polychlorinated biphenyls alter calcium regulation by a ryanodine receptor-mediated mechanism: structural specificity toward skeletal- and cardiac-type microsomal calcium release channels
We investigated a novel molecular mechanism by which polychlorinated biphenyls (PCBs) alter microsomal Ca2+ transport with sarcoplasmic reticulum (SR) membranes isolated from skeletal and cardiac muscles. Aroclors with an intermediate weight percent of chlorine enhance by >6-fold the binding of 1...
Gespeichert in:
Veröffentlicht in: | Molecular pharmacology 1996-04, Vol.49 (4), p.740-751 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 751 |
---|---|
container_issue | 4 |
container_start_page | 740 |
container_title | Molecular pharmacology |
container_volume | 49 |
creator | Wong, P W Pessah, I N |
description | We investigated a novel molecular mechanism by which polychlorinated biphenyls (PCBs) alter microsomal Ca2+ transport with
sarcoplasmic reticulum (SR) membranes isolated from skeletal and cardiac muscles. Aroclors with an intermediate weight percent
of chlorine enhance by >6-fold the binding of 1 nM[3H]ryanodine to its conformationally sensitive site on the SR Ca2+ -release
channel [i.e., ryanodine receptor (RyR)] with high potency (EC50=1.4 microM), whereas Aroclors with either high or low chlorine
composition show little activity. Structure-activity studies with selected pentachlorobiphenyl congeners reveal a stringent
structural requirement for chlorine substitution at the ortho-positions, with 2,2',3,5',6-pentachlorobiphenyl having the highest
potency toward skeletal and cardiac isoforms of RyR (EC50=330 nM and 2 microM, respectively). In contrast, 3,3',4,4',5-pentachlorobiphenyl
does not enhance ryanodine binding, suggesting that noncoplanarity of the biphenyl rings is required for channel activation.
However, 2,2',4,6,6'-pentachlorobiphenyl is significantly less active toward RyR, suggesting that some degree of rotation
about the biphenyl bond is required. 2,2',3,5',6-Pentachlorobiphenyl induces a dose-dependent release of Ca2+ from actively
loaded SR vesicles with a maximum rate of 1.2 micromol mg-1 min-1 (EC50=1 microM), whereas 3,3',4,4',5-pentachlorobiphenyl
(< / = microM) does not alter Ca2+ transport. The mechanism of PCB-induced channel activation involves a significant decrease
in the inhibitory potency of Ca2+ and Mg2+ (20-fold and 100-fold, respectively). Neither 2,2',3,5',6- nor 3,3',4,4',5-pentachlorobiphenyl
(< / = 10 microM) alters the activity of the skeletal isoform of sarcoplasmic/endoplasmic reticulum Ca2+ -ATPase or the cardiac
isoform of sarcoplasmic/endoplasmic reticulum Ca2+ -ATPase, and PCB-induced Ca2+ release can be fully blocked by either microM
ryanodine or ruthenium red. These results are the first to demonstrate a selective ryanodine receptor-mediated mechanism by
which ortho-substituted PCBs alter microsomal Ca2+ transport and may have toxicological relevance. |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_17073578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17073578</sourcerecordid><originalsourceid>FETCH-LOGICAL-h267t-d117e00b3901c2e44afcbf49065bc1822220aa19c93521cafda2703f55931eda3</originalsourceid><addsrcrecordid>eNpFkMtqFUEQhoegxGP0EYTe6K6hey5npt1J0CgEslFwN9TU1Jzp2JexL4R5yLxTOuaAtSmK_6-viv-iOsiullxIKV9VByHqIx9U9_tN9TbGeyFk2w3isrocjkIp0R6qx7uQVs9jnmLSKSea2ebNjqvxQTt4nie9reR2ExmYRIEhGNTZskCnbCBp79i0M2BhB-dn7agoSFvygVua9T-GJVzB6Wg_s5hCxpQDGBY3Qr1o1GlnyT9AmFn8Q4YSGM7AzeVUKADkad-IWY3BR2_L4v8XDEEk9gx3ZOK76vUCJtL7c7-qfn37-vP6O7-9u_lx_eWWr_WxT3yWsichpkYJiTW1LSw4La0Sx25COdSlBIBUqJoSJsIyQ92LZuk61UiaobmqPr1wt-D_ZopptDoiGQOOfI6j7EXfdP1QjB_OxjyVMMYtaAthH8_5F_3ji77q0_qgA43bCsECeuNP-9iqsR37VjRPycaXMg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17073578</pqid></control><display><type>article</type><title>Ortho-substituted polychlorinated biphenyls alter calcium regulation by a ryanodine receptor-mediated mechanism: structural specificity toward skeletal- and cardiac-type microsomal calcium release channels</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Wong, P W ; Pessah, I N</creator><creatorcontrib>Wong, P W ; Pessah, I N</creatorcontrib><description>We investigated a novel molecular mechanism by which polychlorinated biphenyls (PCBs) alter microsomal Ca2+ transport with
sarcoplasmic reticulum (SR) membranes isolated from skeletal and cardiac muscles. Aroclors with an intermediate weight percent
of chlorine enhance by >6-fold the binding of 1 nM[3H]ryanodine to its conformationally sensitive site on the SR Ca2+ -release
channel [i.e., ryanodine receptor (RyR)] with high potency (EC50=1.4 microM), whereas Aroclors with either high or low chlorine
composition show little activity. Structure-activity studies with selected pentachlorobiphenyl congeners reveal a stringent
structural requirement for chlorine substitution at the ortho-positions, with 2,2',3,5',6-pentachlorobiphenyl having the highest
potency toward skeletal and cardiac isoforms of RyR (EC50=330 nM and 2 microM, respectively). In contrast, 3,3',4,4',5-pentachlorobiphenyl
does not enhance ryanodine binding, suggesting that noncoplanarity of the biphenyl rings is required for channel activation.
However, 2,2',4,6,6'-pentachlorobiphenyl is significantly less active toward RyR, suggesting that some degree of rotation
about the biphenyl bond is required. 2,2',3,5',6-Pentachlorobiphenyl induces a dose-dependent release of Ca2+ from actively
loaded SR vesicles with a maximum rate of 1.2 micromol mg-1 min-1 (EC50=1 microM), whereas 3,3',4,4',5-pentachlorobiphenyl
(< / = microM) does not alter Ca2+ transport. The mechanism of PCB-induced channel activation involves a significant decrease
in the inhibitory potency of Ca2+ and Mg2+ (20-fold and 100-fold, respectively). Neither 2,2',3,5',6- nor 3,3',4,4',5-pentachlorobiphenyl
(< / = 10 microM) alters the activity of the skeletal isoform of sarcoplasmic/endoplasmic reticulum Ca2+ -ATPase or the cardiac
isoform of sarcoplasmic/endoplasmic reticulum Ca2+ -ATPase, and PCB-induced Ca2+ release can be fully blocked by either microM
ryanodine or ruthenium red. These results are the first to demonstrate a selective ryanodine receptor-mediated mechanism by
which ortho-substituted PCBs alter microsomal Ca2+ transport and may have toxicological relevance.</description><identifier>ISSN: 0026-895X</identifier><identifier>EISSN: 1521-0111</identifier><identifier>PMID: 8609904</identifier><language>eng</language><publisher>United States: American Society for Pharmacology and Experimental Therapeutics</publisher><subject>Animals ; Aroclors - pharmacology ; Calcium - metabolism ; Calcium Channels - drug effects ; Calcium Channels - physiology ; Male ; Muscle Proteins - drug effects ; Muscle Proteins - physiology ; Muscle, Skeletal - metabolism ; Myocardium - metabolism ; Polychlorinated Biphenyls - pharmacology ; Rabbits ; Ryanodine - metabolism ; Ryanodine Receptor Calcium Release Channel ; Sarcoplasmic Reticulum - metabolism ; Structure-Activity Relationship</subject><ispartof>Molecular pharmacology, 1996-04, Vol.49 (4), p.740-751</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8609904$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wong, P W</creatorcontrib><creatorcontrib>Pessah, I N</creatorcontrib><title>Ortho-substituted polychlorinated biphenyls alter calcium regulation by a ryanodine receptor-mediated mechanism: structural specificity toward skeletal- and cardiac-type microsomal calcium release channels</title><title>Molecular pharmacology</title><addtitle>Mol Pharmacol</addtitle><description>We investigated a novel molecular mechanism by which polychlorinated biphenyls (PCBs) alter microsomal Ca2+ transport with
sarcoplasmic reticulum (SR) membranes isolated from skeletal and cardiac muscles. Aroclors with an intermediate weight percent
of chlorine enhance by >6-fold the binding of 1 nM[3H]ryanodine to its conformationally sensitive site on the SR Ca2+ -release
channel [i.e., ryanodine receptor (RyR)] with high potency (EC50=1.4 microM), whereas Aroclors with either high or low chlorine
composition show little activity. Structure-activity studies with selected pentachlorobiphenyl congeners reveal a stringent
structural requirement for chlorine substitution at the ortho-positions, with 2,2',3,5',6-pentachlorobiphenyl having the highest
potency toward skeletal and cardiac isoforms of RyR (EC50=330 nM and 2 microM, respectively). In contrast, 3,3',4,4',5-pentachlorobiphenyl
does not enhance ryanodine binding, suggesting that noncoplanarity of the biphenyl rings is required for channel activation.
However, 2,2',4,6,6'-pentachlorobiphenyl is significantly less active toward RyR, suggesting that some degree of rotation
about the biphenyl bond is required. 2,2',3,5',6-Pentachlorobiphenyl induces a dose-dependent release of Ca2+ from actively
loaded SR vesicles with a maximum rate of 1.2 micromol mg-1 min-1 (EC50=1 microM), whereas 3,3',4,4',5-pentachlorobiphenyl
(< / = microM) does not alter Ca2+ transport. The mechanism of PCB-induced channel activation involves a significant decrease
in the inhibitory potency of Ca2+ and Mg2+ (20-fold and 100-fold, respectively). Neither 2,2',3,5',6- nor 3,3',4,4',5-pentachlorobiphenyl
(< / = 10 microM) alters the activity of the skeletal isoform of sarcoplasmic/endoplasmic reticulum Ca2+ -ATPase or the cardiac
isoform of sarcoplasmic/endoplasmic reticulum Ca2+ -ATPase, and PCB-induced Ca2+ release can be fully blocked by either microM
ryanodine or ruthenium red. These results are the first to demonstrate a selective ryanodine receptor-mediated mechanism by
which ortho-substituted PCBs alter microsomal Ca2+ transport and may have toxicological relevance.</description><subject>Animals</subject><subject>Aroclors - pharmacology</subject><subject>Calcium - metabolism</subject><subject>Calcium Channels - drug effects</subject><subject>Calcium Channels - physiology</subject><subject>Male</subject><subject>Muscle Proteins - drug effects</subject><subject>Muscle Proteins - physiology</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Myocardium - metabolism</subject><subject>Polychlorinated Biphenyls - pharmacology</subject><subject>Rabbits</subject><subject>Ryanodine - metabolism</subject><subject>Ryanodine Receptor Calcium Release Channel</subject><subject>Sarcoplasmic Reticulum - metabolism</subject><subject>Structure-Activity Relationship</subject><issn>0026-895X</issn><issn>1521-0111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkMtqFUEQhoegxGP0EYTe6K6hey5npt1J0CgEslFwN9TU1Jzp2JexL4R5yLxTOuaAtSmK_6-viv-iOsiullxIKV9VByHqIx9U9_tN9TbGeyFk2w3isrocjkIp0R6qx7uQVs9jnmLSKSea2ebNjqvxQTt4nie9reR2ExmYRIEhGNTZskCnbCBp79i0M2BhB-dn7agoSFvygVua9T-GJVzB6Wg_s5hCxpQDGBY3Qr1o1GlnyT9AmFn8Q4YSGM7AzeVUKADkad-IWY3BR2_L4v8XDEEk9gx3ZOK76vUCJtL7c7-qfn37-vP6O7-9u_lx_eWWr_WxT3yWsichpkYJiTW1LSw4La0Sx25COdSlBIBUqJoSJsIyQ92LZuk61UiaobmqPr1wt-D_ZopptDoiGQOOfI6j7EXfdP1QjB_OxjyVMMYtaAthH8_5F_3ji77q0_qgA43bCsECeuNP-9iqsR37VjRPycaXMg</recordid><startdate>19960401</startdate><enddate>19960401</enddate><creator>Wong, P W</creator><creator>Pessah, I N</creator><general>American Society for Pharmacology and Experimental Therapeutics</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QP</scope><scope>7U7</scope><scope>C1K</scope></search><sort><creationdate>19960401</creationdate><title>Ortho-substituted polychlorinated biphenyls alter calcium regulation by a ryanodine receptor-mediated mechanism: structural specificity toward skeletal- and cardiac-type microsomal calcium release channels</title><author>Wong, P W ; Pessah, I N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h267t-d117e00b3901c2e44afcbf49065bc1822220aa19c93521cafda2703f55931eda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Animals</topic><topic>Aroclors - pharmacology</topic><topic>Calcium - metabolism</topic><topic>Calcium Channels - drug effects</topic><topic>Calcium Channels - physiology</topic><topic>Male</topic><topic>Muscle Proteins - drug effects</topic><topic>Muscle Proteins - physiology</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Myocardium - metabolism</topic><topic>Polychlorinated Biphenyls - pharmacology</topic><topic>Rabbits</topic><topic>Ryanodine - metabolism</topic><topic>Ryanodine Receptor Calcium Release Channel</topic><topic>Sarcoplasmic Reticulum - metabolism</topic><topic>Structure-Activity Relationship</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wong, P W</creatorcontrib><creatorcontrib>Pessah, I N</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Molecular pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wong, P W</au><au>Pessah, I N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ortho-substituted polychlorinated biphenyls alter calcium regulation by a ryanodine receptor-mediated mechanism: structural specificity toward skeletal- and cardiac-type microsomal calcium release channels</atitle><jtitle>Molecular pharmacology</jtitle><addtitle>Mol Pharmacol</addtitle><date>1996-04-01</date><risdate>1996</risdate><volume>49</volume><issue>4</issue><spage>740</spage><epage>751</epage><pages>740-751</pages><issn>0026-895X</issn><eissn>1521-0111</eissn><abstract>We investigated a novel molecular mechanism by which polychlorinated biphenyls (PCBs) alter microsomal Ca2+ transport with
sarcoplasmic reticulum (SR) membranes isolated from skeletal and cardiac muscles. Aroclors with an intermediate weight percent
of chlorine enhance by >6-fold the binding of 1 nM[3H]ryanodine to its conformationally sensitive site on the SR Ca2+ -release
channel [i.e., ryanodine receptor (RyR)] with high potency (EC50=1.4 microM), whereas Aroclors with either high or low chlorine
composition show little activity. Structure-activity studies with selected pentachlorobiphenyl congeners reveal a stringent
structural requirement for chlorine substitution at the ortho-positions, with 2,2',3,5',6-pentachlorobiphenyl having the highest
potency toward skeletal and cardiac isoforms of RyR (EC50=330 nM and 2 microM, respectively). In contrast, 3,3',4,4',5-pentachlorobiphenyl
does not enhance ryanodine binding, suggesting that noncoplanarity of the biphenyl rings is required for channel activation.
However, 2,2',4,6,6'-pentachlorobiphenyl is significantly less active toward RyR, suggesting that some degree of rotation
about the biphenyl bond is required. 2,2',3,5',6-Pentachlorobiphenyl induces a dose-dependent release of Ca2+ from actively
loaded SR vesicles with a maximum rate of 1.2 micromol mg-1 min-1 (EC50=1 microM), whereas 3,3',4,4',5-pentachlorobiphenyl
(< / = microM) does not alter Ca2+ transport. The mechanism of PCB-induced channel activation involves a significant decrease
in the inhibitory potency of Ca2+ and Mg2+ (20-fold and 100-fold, respectively). Neither 2,2',3,5',6- nor 3,3',4,4',5-pentachlorobiphenyl
(< / = 10 microM) alters the activity of the skeletal isoform of sarcoplasmic/endoplasmic reticulum Ca2+ -ATPase or the cardiac
isoform of sarcoplasmic/endoplasmic reticulum Ca2+ -ATPase, and PCB-induced Ca2+ release can be fully blocked by either microM
ryanodine or ruthenium red. These results are the first to demonstrate a selective ryanodine receptor-mediated mechanism by
which ortho-substituted PCBs alter microsomal Ca2+ transport and may have toxicological relevance.</abstract><cop>United States</cop><pub>American Society for Pharmacology and Experimental Therapeutics</pub><pmid>8609904</pmid><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0026-895X |
ispartof | Molecular pharmacology, 1996-04, Vol.49 (4), p.740-751 |
issn | 0026-895X 1521-0111 |
language | eng |
recordid | cdi_proquest_miscellaneous_17073578 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals |
subjects | Animals Aroclors - pharmacology Calcium - metabolism Calcium Channels - drug effects Calcium Channels - physiology Male Muscle Proteins - drug effects Muscle Proteins - physiology Muscle, Skeletal - metabolism Myocardium - metabolism Polychlorinated Biphenyls - pharmacology Rabbits Ryanodine - metabolism Ryanodine Receptor Calcium Release Channel Sarcoplasmic Reticulum - metabolism Structure-Activity Relationship |
title | Ortho-substituted polychlorinated biphenyls alter calcium regulation by a ryanodine receptor-mediated mechanism: structural specificity toward skeletal- and cardiac-type microsomal calcium release channels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T22%3A57%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ortho-substituted%20polychlorinated%20biphenyls%20alter%20calcium%20regulation%20by%20a%20ryanodine%20receptor-mediated%20mechanism:%20structural%20specificity%20toward%20skeletal-%20and%20cardiac-type%20microsomal%20calcium%20release%20channels&rft.jtitle=Molecular%20pharmacology&rft.au=Wong,%20P%20W&rft.date=1996-04-01&rft.volume=49&rft.issue=4&rft.spage=740&rft.epage=751&rft.pages=740-751&rft.issn=0026-895X&rft.eissn=1521-0111&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E17073578%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17073578&rft_id=info:pmid/8609904&rfr_iscdi=true |