Microbial biomass and activity under oxic and anoxic conditions as affected by nitrate additions
Soil microbial activity, biomass, and community structure were examined during the transition from oxic to anoxic conditions after the addition of glucose and with or without nitrate addition. In two sets of treatments, samples were incubated for up to 35 d in closed ampoules either aerobically unti...
Gespeichert in:
Veröffentlicht in: | Journal of plant nutrition and soil science 2006-02, Vol.169 (1), p.108-115 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 115 |
---|---|
container_issue | 1 |
container_start_page | 108 |
container_title | Journal of plant nutrition and soil science |
container_volume | 169 |
creator | Dyckmans, J Flessa, H Lipski, A Potthoff, M Beese, F |
description | Soil microbial activity, biomass, and community structure were examined during the transition from oxic to anoxic conditions after the addition of glucose and with or without nitrate addition. In two sets of treatments, samples were incubated for up to 35 d in closed ampoules either aerobically until oxygen was depleted or anoxically throughout the experiment. Heat‐flow rate was monitored to indicate microbial activity. Microbial biomass and community structure were measured by adenylate and phospholipid fatty acid (PFLA) content, and adenylate energy charge (AEC) was used to monitor the physiological status of the microbial biomass.
Microbial activity was highest under oxic conditions and abruptly decreased under anoxic conditions. Activity peaks were observed after about 9 d of anoxic conditions probably triggered by increased nutrient availability from dying microbial biomass, but these peaks were smaller after initial oxic incubation or nitrate addition. Microbial biomass was unchanged under oxic conditions but decreased under anoxic conditions. Most surviving microbes switched into dormancy. Changes in the microbial‐population structure were small and occurred only after 9 d of anoxic incubation. The results show that the nutrient status and the availability of electron acceptors such as nitrate were important factors ruling the direction and the extent of shifts in the microbial activity and community structures due to anoxic conditions.
Mikrobielle Biomasse und Aktivität unter oxischen und anoxischen Bedingungen in Abhängigkeit von Nitratzugabe
Untersucht wurden Aktivität, Menge und Zusammensetzung der mikrobiellen Biomasse im Übergang von oxischen zu anoxischen Bedingungen in Bodenproben nach Zugabe von Glucose sowie mit und ohne Nitratzugabe. Bodenproben wurden bis zu 35 Tage in geschlossenen Gefäßen entweder oxisch bis zum Verbrauch des Sauerstoffs oder von Beginn an anoxisch inkubiert. Dabei wurde der Wärmefluss als Indikator für die mikrobielle Aktivität gemessen. Menge und Zusammensetzung der mikrobiellen Biomasse wurden über die Gehalte an Adenylaten und Phospholipidfettsäuren bestimmt. Der „Adenylate Energy Charge”︁ (AEC) wurde genutzt, um den physiologischen Status der mikrobiellen Biomasse zu bestimmen.
Die mikrobielle Aktivität war unter oxischen Bedingungen am höchsten und ging unter anoxischen Bedingungen drastisch zurück. Aktivitätspeaks wurden nach etwa 10 Tagen anoxischer Inkubation beobachtet und waren vermutlich verursacht durch ei |
doi_str_mv | 10.1002/jpln.200521735 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17068519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17068519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4835-f1df6a87f8d6564e99a20ba3528708fa7b0a9ad275c13245f8cd2dc08e376d233</originalsourceid><addsrcrecordid>eNqFkM1v1DAQxSMEEqXlypVc4JZl_O0cYQULaNsilYqjmfgDuWSTrZ2F7n9ft1kVbpVGmpH1e89Pr6peEVgQAPruatsPCwogKFFMPKmOiKC0oZLyp-XmTDZaMXhevcj5CgA4aelR9fM02jR2Efu6i-MGc65xcDXaKf6J077eDc6neryJdn4f7k87Di5OcRwKXSYEbyfv6m5fD3FKOPka3QE4qZ4F7LN_edjH1eWnj9-Xn5v1-erL8v26sVwz0QTigkStgnZSSO7bFil0yATVCnRA1QG26KgSljDKRdDWUWdBe6ako4wdV29n320ar3c-T2YTs_V9j4Mfd9kQBVIL0j4OciUZJVDAxQyWgnJOPphtihtMe0PA3DVu7ho3D40XwZuDM2aLfUg42Jj_qRRvCQNeuHbm_sbe7x9xNV-_rc_-_6OZtTFP_uZBi-m3kYopYX6crczFcr0Sp-qDWRX-9cwHHA3-SiXP5QWFkoOApG1JcwvFPKsL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>14763210</pqid></control><display><type>article</type><title>Microbial biomass and activity under oxic and anoxic conditions as affected by nitrate additions</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Dyckmans, J ; Flessa, H ; Lipski, A ; Potthoff, M ; Beese, F</creator><creatorcontrib>Dyckmans, J ; Flessa, H ; Lipski, A ; Potthoff, M ; Beese, F</creatorcontrib><description>Soil microbial activity, biomass, and community structure were examined during the transition from oxic to anoxic conditions after the addition of glucose and with or without nitrate addition. In two sets of treatments, samples were incubated for up to 35 d in closed ampoules either aerobically until oxygen was depleted or anoxically throughout the experiment. Heat‐flow rate was monitored to indicate microbial activity. Microbial biomass and community structure were measured by adenylate and phospholipid fatty acid (PFLA) content, and adenylate energy charge (AEC) was used to monitor the physiological status of the microbial biomass.
Microbial activity was highest under oxic conditions and abruptly decreased under anoxic conditions. Activity peaks were observed after about 9 d of anoxic conditions probably triggered by increased nutrient availability from dying microbial biomass, but these peaks were smaller after initial oxic incubation or nitrate addition. Microbial biomass was unchanged under oxic conditions but decreased under anoxic conditions. Most surviving microbes switched into dormancy. Changes in the microbial‐population structure were small and occurred only after 9 d of anoxic incubation. The results show that the nutrient status and the availability of electron acceptors such as nitrate were important factors ruling the direction and the extent of shifts in the microbial activity and community structures due to anoxic conditions.
Mikrobielle Biomasse und Aktivität unter oxischen und anoxischen Bedingungen in Abhängigkeit von Nitratzugabe
Untersucht wurden Aktivität, Menge und Zusammensetzung der mikrobiellen Biomasse im Übergang von oxischen zu anoxischen Bedingungen in Bodenproben nach Zugabe von Glucose sowie mit und ohne Nitratzugabe. Bodenproben wurden bis zu 35 Tage in geschlossenen Gefäßen entweder oxisch bis zum Verbrauch des Sauerstoffs oder von Beginn an anoxisch inkubiert. Dabei wurde der Wärmefluss als Indikator für die mikrobielle Aktivität gemessen. Menge und Zusammensetzung der mikrobiellen Biomasse wurden über die Gehalte an Adenylaten und Phospholipidfettsäuren bestimmt. Der „Adenylate Energy Charge”︁ (AEC) wurde genutzt, um den physiologischen Status der mikrobiellen Biomasse zu bestimmen.
Die mikrobielle Aktivität war unter oxischen Bedingungen am höchsten und ging unter anoxischen Bedingungen drastisch zurück. Aktivitätspeaks wurden nach etwa 10 Tagen anoxischer Inkubation beobachtet und waren vermutlich verursacht durch ein erhöhtes Nährstoffangebot aus der abgestorbenen Biomasse. Diese Peaks waren geringer nach vorhergehender oxischer Inkubation bzw. nach Nitratzugabe. Die mikrobielle Biomasse war unter oxischen Bedingungen unverändert, nahm aber unter anoxischen Bedingungen ab, die meisten überlebenden Mikroben waren dabei dormant. Änderungen in der mikrobiellen Gesellschaft traten nur in geringem Umfang und erst nach 9 Tagen anoxischer Inkubation auf. Unsere Ergebnisse zeigen, dass das Nährstoffangebot und die Verfügbarkeit von Elektronenakzeptoren wie z. B. Nitrat wichtige Steuergrößen für Richtung und Ausmaß von Veränderungen in der mikrobiellen Aktivität und Zusammensetzung unter anoxischen Bedingungen sind.</description><identifier>ISSN: 1436-8730</identifier><identifier>EISSN: 1522-2624</identifier><identifier>DOI: 10.1002/jpln.200521735</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>AEC ; aerobic conditions ; Agronomy. Soil science and plant productions ; anaerobic conditions ; anoxic conditions ; application rate ; ATP ; Biochemistry and biology ; Biological and medical sciences ; cell growth ; Chemical, physicochemical, biochemical and biological properties ; forest soils ; Fundamental and applied biological sciences. Psychology ; General agronomy. Plant production ; heat-flow rate ; microbial activity ; microbial biomass ; Microbiology ; nitrates ; O2 availability ; Physics, chemistry, biochemistry and biology of agricultural and forest soils ; PLFA ; soil chemistry ; soil microorganisms ; Soil science ; Soil-plant relationships. Soil fertility ; Soil-plant relationships. Soil fertility. Fertilization. Amendments</subject><ispartof>Journal of plant nutrition and soil science, 2006-02, Vol.169 (1), p.108-115</ispartof><rights>Copyright © 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4835-f1df6a87f8d6564e99a20ba3528708fa7b0a9ad275c13245f8cd2dc08e376d233</citedby><cites>FETCH-LOGICAL-c4835-f1df6a87f8d6564e99a20ba3528708fa7b0a9ad275c13245f8cd2dc08e376d233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjpln.200521735$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjpln.200521735$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17491304$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dyckmans, J</creatorcontrib><creatorcontrib>Flessa, H</creatorcontrib><creatorcontrib>Lipski, A</creatorcontrib><creatorcontrib>Potthoff, M</creatorcontrib><creatorcontrib>Beese, F</creatorcontrib><title>Microbial biomass and activity under oxic and anoxic conditions as affected by nitrate additions</title><title>Journal of plant nutrition and soil science</title><addtitle>Z. Pflanzenernähr. Bodenk</addtitle><description>Soil microbial activity, biomass, and community structure were examined during the transition from oxic to anoxic conditions after the addition of glucose and with or without nitrate addition. In two sets of treatments, samples were incubated for up to 35 d in closed ampoules either aerobically until oxygen was depleted or anoxically throughout the experiment. Heat‐flow rate was monitored to indicate microbial activity. Microbial biomass and community structure were measured by adenylate and phospholipid fatty acid (PFLA) content, and adenylate energy charge (AEC) was used to monitor the physiological status of the microbial biomass.
Microbial activity was highest under oxic conditions and abruptly decreased under anoxic conditions. Activity peaks were observed after about 9 d of anoxic conditions probably triggered by increased nutrient availability from dying microbial biomass, but these peaks were smaller after initial oxic incubation or nitrate addition. Microbial biomass was unchanged under oxic conditions but decreased under anoxic conditions. Most surviving microbes switched into dormancy. Changes in the microbial‐population structure were small and occurred only after 9 d of anoxic incubation. The results show that the nutrient status and the availability of electron acceptors such as nitrate were important factors ruling the direction and the extent of shifts in the microbial activity and community structures due to anoxic conditions.
Mikrobielle Biomasse und Aktivität unter oxischen und anoxischen Bedingungen in Abhängigkeit von Nitratzugabe
Untersucht wurden Aktivität, Menge und Zusammensetzung der mikrobiellen Biomasse im Übergang von oxischen zu anoxischen Bedingungen in Bodenproben nach Zugabe von Glucose sowie mit und ohne Nitratzugabe. Bodenproben wurden bis zu 35 Tage in geschlossenen Gefäßen entweder oxisch bis zum Verbrauch des Sauerstoffs oder von Beginn an anoxisch inkubiert. Dabei wurde der Wärmefluss als Indikator für die mikrobielle Aktivität gemessen. Menge und Zusammensetzung der mikrobiellen Biomasse wurden über die Gehalte an Adenylaten und Phospholipidfettsäuren bestimmt. Der „Adenylate Energy Charge”︁ (AEC) wurde genutzt, um den physiologischen Status der mikrobiellen Biomasse zu bestimmen.
Die mikrobielle Aktivität war unter oxischen Bedingungen am höchsten und ging unter anoxischen Bedingungen drastisch zurück. Aktivitätspeaks wurden nach etwa 10 Tagen anoxischer Inkubation beobachtet und waren vermutlich verursacht durch ein erhöhtes Nährstoffangebot aus der abgestorbenen Biomasse. Diese Peaks waren geringer nach vorhergehender oxischer Inkubation bzw. nach Nitratzugabe. Die mikrobielle Biomasse war unter oxischen Bedingungen unverändert, nahm aber unter anoxischen Bedingungen ab, die meisten überlebenden Mikroben waren dabei dormant. Änderungen in der mikrobiellen Gesellschaft traten nur in geringem Umfang und erst nach 9 Tagen anoxischer Inkubation auf. Unsere Ergebnisse zeigen, dass das Nährstoffangebot und die Verfügbarkeit von Elektronenakzeptoren wie z. B. Nitrat wichtige Steuergrößen für Richtung und Ausmaß von Veränderungen in der mikrobiellen Aktivität und Zusammensetzung unter anoxischen Bedingungen sind.</description><subject>AEC</subject><subject>aerobic conditions</subject><subject>Agronomy. Soil science and plant productions</subject><subject>anaerobic conditions</subject><subject>anoxic conditions</subject><subject>application rate</subject><subject>ATP</subject><subject>Biochemistry and biology</subject><subject>Biological and medical sciences</subject><subject>cell growth</subject><subject>Chemical, physicochemical, biochemical and biological properties</subject><subject>forest soils</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General agronomy. Plant production</subject><subject>heat-flow rate</subject><subject>microbial activity</subject><subject>microbial biomass</subject><subject>Microbiology</subject><subject>nitrates</subject><subject>O2 availability</subject><subject>Physics, chemistry, biochemistry and biology of agricultural and forest soils</subject><subject>PLFA</subject><subject>soil chemistry</subject><subject>soil microorganisms</subject><subject>Soil science</subject><subject>Soil-plant relationships. Soil fertility</subject><subject>Soil-plant relationships. Soil fertility. Fertilization. Amendments</subject><issn>1436-8730</issn><issn>1522-2624</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkM1v1DAQxSMEEqXlypVc4JZl_O0cYQULaNsilYqjmfgDuWSTrZ2F7n9ft1kVbpVGmpH1e89Pr6peEVgQAPruatsPCwogKFFMPKmOiKC0oZLyp-XmTDZaMXhevcj5CgA4aelR9fM02jR2Efu6i-MGc65xcDXaKf6J077eDc6neryJdn4f7k87Di5OcRwKXSYEbyfv6m5fD3FKOPka3QE4qZ4F7LN_edjH1eWnj9-Xn5v1-erL8v26sVwz0QTigkStgnZSSO7bFil0yATVCnRA1QG26KgSljDKRdDWUWdBe6ako4wdV29n320ar3c-T2YTs_V9j4Mfd9kQBVIL0j4OciUZJVDAxQyWgnJOPphtihtMe0PA3DVu7ho3D40XwZuDM2aLfUg42Jj_qRRvCQNeuHbm_sbe7x9xNV-_rc_-_6OZtTFP_uZBi-m3kYopYX6crczFcr0Sp-qDWRX-9cwHHA3-SiXP5QWFkoOApG1JcwvFPKsL</recordid><startdate>200602</startdate><enddate>200602</enddate><creator>Dyckmans, J</creator><creator>Flessa, H</creator><creator>Lipski, A</creator><creator>Potthoff, M</creator><creator>Beese, F</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7T7</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>200602</creationdate><title>Microbial biomass and activity under oxic and anoxic conditions as affected by nitrate additions</title><author>Dyckmans, J ; Flessa, H ; Lipski, A ; Potthoff, M ; Beese, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4835-f1df6a87f8d6564e99a20ba3528708fa7b0a9ad275c13245f8cd2dc08e376d233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>AEC</topic><topic>aerobic conditions</topic><topic>Agronomy. Soil science and plant productions</topic><topic>anaerobic conditions</topic><topic>anoxic conditions</topic><topic>application rate</topic><topic>ATP</topic><topic>Biochemistry and biology</topic><topic>Biological and medical sciences</topic><topic>cell growth</topic><topic>Chemical, physicochemical, biochemical and biological properties</topic><topic>forest soils</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General agronomy. Plant production</topic><topic>heat-flow rate</topic><topic>microbial activity</topic><topic>microbial biomass</topic><topic>Microbiology</topic><topic>nitrates</topic><topic>O2 availability</topic><topic>Physics, chemistry, biochemistry and biology of agricultural and forest soils</topic><topic>PLFA</topic><topic>soil chemistry</topic><topic>soil microorganisms</topic><topic>Soil science</topic><topic>Soil-plant relationships. Soil fertility</topic><topic>Soil-plant relationships. Soil fertility. Fertilization. Amendments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dyckmans, J</creatorcontrib><creatorcontrib>Flessa, H</creatorcontrib><creatorcontrib>Lipski, A</creatorcontrib><creatorcontrib>Potthoff, M</creatorcontrib><creatorcontrib>Beese, F</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of plant nutrition and soil science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dyckmans, J</au><au>Flessa, H</au><au>Lipski, A</au><au>Potthoff, M</au><au>Beese, F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microbial biomass and activity under oxic and anoxic conditions as affected by nitrate additions</atitle><jtitle>Journal of plant nutrition and soil science</jtitle><addtitle>Z. Pflanzenernähr. Bodenk</addtitle><date>2006-02</date><risdate>2006</risdate><volume>169</volume><issue>1</issue><spage>108</spage><epage>115</epage><pages>108-115</pages><issn>1436-8730</issn><eissn>1522-2624</eissn><abstract>Soil microbial activity, biomass, and community structure were examined during the transition from oxic to anoxic conditions after the addition of glucose and with or without nitrate addition. In two sets of treatments, samples were incubated for up to 35 d in closed ampoules either aerobically until oxygen was depleted or anoxically throughout the experiment. Heat‐flow rate was monitored to indicate microbial activity. Microbial biomass and community structure were measured by adenylate and phospholipid fatty acid (PFLA) content, and adenylate energy charge (AEC) was used to monitor the physiological status of the microbial biomass.
Microbial activity was highest under oxic conditions and abruptly decreased under anoxic conditions. Activity peaks were observed after about 9 d of anoxic conditions probably triggered by increased nutrient availability from dying microbial biomass, but these peaks were smaller after initial oxic incubation or nitrate addition. Microbial biomass was unchanged under oxic conditions but decreased under anoxic conditions. Most surviving microbes switched into dormancy. Changes in the microbial‐population structure were small and occurred only after 9 d of anoxic incubation. The results show that the nutrient status and the availability of electron acceptors such as nitrate were important factors ruling the direction and the extent of shifts in the microbial activity and community structures due to anoxic conditions.
Mikrobielle Biomasse und Aktivität unter oxischen und anoxischen Bedingungen in Abhängigkeit von Nitratzugabe
Untersucht wurden Aktivität, Menge und Zusammensetzung der mikrobiellen Biomasse im Übergang von oxischen zu anoxischen Bedingungen in Bodenproben nach Zugabe von Glucose sowie mit und ohne Nitratzugabe. Bodenproben wurden bis zu 35 Tage in geschlossenen Gefäßen entweder oxisch bis zum Verbrauch des Sauerstoffs oder von Beginn an anoxisch inkubiert. Dabei wurde der Wärmefluss als Indikator für die mikrobielle Aktivität gemessen. Menge und Zusammensetzung der mikrobiellen Biomasse wurden über die Gehalte an Adenylaten und Phospholipidfettsäuren bestimmt. Der „Adenylate Energy Charge”︁ (AEC) wurde genutzt, um den physiologischen Status der mikrobiellen Biomasse zu bestimmen.
Die mikrobielle Aktivität war unter oxischen Bedingungen am höchsten und ging unter anoxischen Bedingungen drastisch zurück. Aktivitätspeaks wurden nach etwa 10 Tagen anoxischer Inkubation beobachtet und waren vermutlich verursacht durch ein erhöhtes Nährstoffangebot aus der abgestorbenen Biomasse. Diese Peaks waren geringer nach vorhergehender oxischer Inkubation bzw. nach Nitratzugabe. Die mikrobielle Biomasse war unter oxischen Bedingungen unverändert, nahm aber unter anoxischen Bedingungen ab, die meisten überlebenden Mikroben waren dabei dormant. Änderungen in der mikrobiellen Gesellschaft traten nur in geringem Umfang und erst nach 9 Tagen anoxischer Inkubation auf. Unsere Ergebnisse zeigen, dass das Nährstoffangebot und die Verfügbarkeit von Elektronenakzeptoren wie z. B. Nitrat wichtige Steuergrößen für Richtung und Ausmaß von Veränderungen in der mikrobiellen Aktivität und Zusammensetzung unter anoxischen Bedingungen sind.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/jpln.200521735</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1436-8730 |
ispartof | Journal of plant nutrition and soil science, 2006-02, Vol.169 (1), p.108-115 |
issn | 1436-8730 1522-2624 |
language | eng |
recordid | cdi_proquest_miscellaneous_17068519 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | AEC aerobic conditions Agronomy. Soil science and plant productions anaerobic conditions anoxic conditions application rate ATP Biochemistry and biology Biological and medical sciences cell growth Chemical, physicochemical, biochemical and biological properties forest soils Fundamental and applied biological sciences. Psychology General agronomy. Plant production heat-flow rate microbial activity microbial biomass Microbiology nitrates O2 availability Physics, chemistry, biochemistry and biology of agricultural and forest soils PLFA soil chemistry soil microorganisms Soil science Soil-plant relationships. Soil fertility Soil-plant relationships. Soil fertility. Fertilization. Amendments |
title | Microbial biomass and activity under oxic and anoxic conditions as affected by nitrate additions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A49%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microbial%20biomass%20and%20activity%20under%20oxic%20and%20anoxic%20conditions%20as%20affected%20by%20nitrate%20additions&rft.jtitle=Journal%20of%20plant%20nutrition%20and%20soil%20science&rft.au=Dyckmans,%20J&rft.date=2006-02&rft.volume=169&rft.issue=1&rft.spage=108&rft.epage=115&rft.pages=108-115&rft.issn=1436-8730&rft.eissn=1522-2624&rft_id=info:doi/10.1002/jpln.200521735&rft_dat=%3Cproquest_cross%3E17068519%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=14763210&rft_id=info:pmid/&rfr_iscdi=true |