Dynamic Infinite Mixed-Membership Stochastic Blockmodel
Directional and pairwise measurements are often used to model interactions in a social network setting. The mixed-membership stochastic blockmodel (MMSB) was a seminal work in this area, and its ability has been extended. However, models such as MMSB face particular challenges in modeling dynamic ne...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2015-09, Vol.26 (9), p.2072-2085 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2085 |
---|---|
container_issue | 9 |
container_start_page | 2072 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 26 |
creator | Xuhui Fan Longbing Cao Da Xu, Richard Yi |
description | Directional and pairwise measurements are often used to model interactions in a social network setting. The mixed-membership stochastic blockmodel (MMSB) was a seminal work in this area, and its ability has been extended. However, models such as MMSB face particular challenges in modeling dynamic networks, for example, with the unknown number of communities. Accordingly, this paper proposes a dynamic infinite mixed-membership stochastic blockmodel, a generalized framework that extends the existing work to potentially infinite communities inside a network in dynamic settings (i.e., networks are observed over time). Additional model parameters are introduced to reflect the degree of persistence among one's memberships at consecutive time stamps. Under this framework, two specific models, namely mixture time variant and mixture time invariant models, are proposed to depict two different time correlation structures. Two effective posterior sampling strategies and their results are presented, respectively, using synthetic and real-world data. |
doi_str_mv | 10.1109/TNNLS.2014.2369374 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1706205918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6965621</ieee_id><sourcerecordid>1706205918</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-9ebebda90206e7a347a89119c2c61feea744b95a5142d58a1a88cbb5603a72d33</originalsourceid><addsrcrecordid>eNpdkMlOAkEQhjtGIwR5AU0MiRcvg70vR8WNBPAAJt46PT1FGJwFp2cSeXsHQQ7WpSqp769UPoQuCR4Sgs3dYjabzIcUEz6kTBqm-AnqUiJpRJnWp8dZfXRQP4Q1bktiIbk5Rx0qONOMqi5Sj9vC5akfjItlWqQ1DKbpNyTRFPIYqrBKN4N5XfqVC3ULPWSl_8zLBLILdLZ0WYD-offQ-_PTYvQaTd5exqP7SeS5FHVkIIY4cQZTLEE5xpXThhDjqZdkCeAU57ERThBOE6EdcVr7OBYSM6dowlgP3e7vbqryq4FQ2zwNHrLMFVA2wRKFJcXCEN2iN__QddlURfvdjhKKG65JS9E95asyhAqWdlOluau2lmC7M2t_zdqdWXsw24auD6ebOIfkGPnz2AJXeyAFgONaGikkJewHfBF7IQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1705749481</pqid></control><display><type>article</type><title>Dynamic Infinite Mixed-Membership Stochastic Blockmodel</title><source>IEEE Electronic Library (IEL)</source><creator>Xuhui Fan ; Longbing Cao ; Da Xu, Richard Yi</creator><creatorcontrib>Xuhui Fan ; Longbing Cao ; Da Xu, Richard Yi</creatorcontrib><description>Directional and pairwise measurements are often used to model interactions in a social network setting. The mixed-membership stochastic blockmodel (MMSB) was a seminal work in this area, and its ability has been extended. However, models such as MMSB face particular challenges in modeling dynamic networks, for example, with the unknown number of communities. Accordingly, this paper proposes a dynamic infinite mixed-membership stochastic blockmodel, a generalized framework that extends the existing work to potentially infinite communities inside a network in dynamic settings (i.e., networks are observed over time). Additional model parameters are introduced to reflect the degree of persistence among one's memberships at consecutive time stamps. Under this framework, two specific models, namely mixture time variant and mixture time invariant models, are proposed to depict two different time correlation structures. Two effective posterior sampling strategies and their results are presented, respectively, using synthetic and real-world data.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2014.2369374</identifier><identifier>PMID: 25438327</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Bayes methods ; Bayesian nonparametric ; Communities ; Data models ; dynamic ; Economic models ; Gibbs sampling ; Hidden Markov models ; Learning systems ; Markov Chain Monte Carlo (MCMC) inference ; mixed-membership stochastic blockmodel (MMSB) ; Peer-to-peer computing ; slice sampling ; Stochastic processes</subject><ispartof>IEEE transaction on neural networks and learning systems, 2015-09, Vol.26 (9), p.2072-2085</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-9ebebda90206e7a347a89119c2c61feea744b95a5142d58a1a88cbb5603a72d33</citedby><cites>FETCH-LOGICAL-c465t-9ebebda90206e7a347a89119c2c61feea744b95a5142d58a1a88cbb5603a72d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6965621$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6965621$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25438327$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xuhui Fan</creatorcontrib><creatorcontrib>Longbing Cao</creatorcontrib><creatorcontrib>Da Xu, Richard Yi</creatorcontrib><title>Dynamic Infinite Mixed-Membership Stochastic Blockmodel</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Directional and pairwise measurements are often used to model interactions in a social network setting. The mixed-membership stochastic blockmodel (MMSB) was a seminal work in this area, and its ability has been extended. However, models such as MMSB face particular challenges in modeling dynamic networks, for example, with the unknown number of communities. Accordingly, this paper proposes a dynamic infinite mixed-membership stochastic blockmodel, a generalized framework that extends the existing work to potentially infinite communities inside a network in dynamic settings (i.e., networks are observed over time). Additional model parameters are introduced to reflect the degree of persistence among one's memberships at consecutive time stamps. Under this framework, two specific models, namely mixture time variant and mixture time invariant models, are proposed to depict two different time correlation structures. Two effective posterior sampling strategies and their results are presented, respectively, using synthetic and real-world data.</description><subject>Bayes methods</subject><subject>Bayesian nonparametric</subject><subject>Communities</subject><subject>Data models</subject><subject>dynamic</subject><subject>Economic models</subject><subject>Gibbs sampling</subject><subject>Hidden Markov models</subject><subject>Learning systems</subject><subject>Markov Chain Monte Carlo (MCMC) inference</subject><subject>mixed-membership stochastic blockmodel (MMSB)</subject><subject>Peer-to-peer computing</subject><subject>slice sampling</subject><subject>Stochastic processes</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMlOAkEQhjtGIwR5AU0MiRcvg70vR8WNBPAAJt46PT1FGJwFp2cSeXsHQQ7WpSqp769UPoQuCR4Sgs3dYjabzIcUEz6kTBqm-AnqUiJpRJnWp8dZfXRQP4Q1bktiIbk5Rx0qONOMqi5Sj9vC5akfjItlWqQ1DKbpNyTRFPIYqrBKN4N5XfqVC3ULPWSl_8zLBLILdLZ0WYD-offQ-_PTYvQaTd5exqP7SeS5FHVkIIY4cQZTLEE5xpXThhDjqZdkCeAU57ERThBOE6EdcVr7OBYSM6dowlgP3e7vbqryq4FQ2zwNHrLMFVA2wRKFJcXCEN2iN__QddlURfvdjhKKG65JS9E95asyhAqWdlOluau2lmC7M2t_zdqdWXsw24auD6ebOIfkGPnz2AJXeyAFgONaGikkJewHfBF7IQ</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Xuhui Fan</creator><creator>Longbing Cao</creator><creator>Da Xu, Richard Yi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20150901</creationdate><title>Dynamic Infinite Mixed-Membership Stochastic Blockmodel</title><author>Xuhui Fan ; Longbing Cao ; Da Xu, Richard Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-9ebebda90206e7a347a89119c2c61feea744b95a5142d58a1a88cbb5603a72d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bayes methods</topic><topic>Bayesian nonparametric</topic><topic>Communities</topic><topic>Data models</topic><topic>dynamic</topic><topic>Economic models</topic><topic>Gibbs sampling</topic><topic>Hidden Markov models</topic><topic>Learning systems</topic><topic>Markov Chain Monte Carlo (MCMC) inference</topic><topic>mixed-membership stochastic blockmodel (MMSB)</topic><topic>Peer-to-peer computing</topic><topic>slice sampling</topic><topic>Stochastic processes</topic><toplevel>online_resources</toplevel><creatorcontrib>Xuhui Fan</creatorcontrib><creatorcontrib>Longbing Cao</creatorcontrib><creatorcontrib>Da Xu, Richard Yi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xuhui Fan</au><au>Longbing Cao</au><au>Da Xu, Richard Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Infinite Mixed-Membership Stochastic Blockmodel</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2015-09-01</date><risdate>2015</risdate><volume>26</volume><issue>9</issue><spage>2072</spage><epage>2085</epage><pages>2072-2085</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Directional and pairwise measurements are often used to model interactions in a social network setting. The mixed-membership stochastic blockmodel (MMSB) was a seminal work in this area, and its ability has been extended. However, models such as MMSB face particular challenges in modeling dynamic networks, for example, with the unknown number of communities. Accordingly, this paper proposes a dynamic infinite mixed-membership stochastic blockmodel, a generalized framework that extends the existing work to potentially infinite communities inside a network in dynamic settings (i.e., networks are observed over time). Additional model parameters are introduced to reflect the degree of persistence among one's memberships at consecutive time stamps. Under this framework, two specific models, namely mixture time variant and mixture time invariant models, are proposed to depict two different time correlation structures. Two effective posterior sampling strategies and their results are presented, respectively, using synthetic and real-world data.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>25438327</pmid><doi>10.1109/TNNLS.2014.2369374</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2015-09, Vol.26 (9), p.2072-2085 |
issn | 2162-237X 2162-2388 |
language | eng |
recordid | cdi_proquest_miscellaneous_1706205918 |
source | IEEE Electronic Library (IEL) |
subjects | Bayes methods Bayesian nonparametric Communities Data models dynamic Economic models Gibbs sampling Hidden Markov models Learning systems Markov Chain Monte Carlo (MCMC) inference mixed-membership stochastic blockmodel (MMSB) Peer-to-peer computing slice sampling Stochastic processes |
title | Dynamic Infinite Mixed-Membership Stochastic Blockmodel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T10%3A42%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Infinite%20Mixed-Membership%20Stochastic%20Blockmodel&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Xuhui%20Fan&rft.date=2015-09-01&rft.volume=26&rft.issue=9&rft.spage=2072&rft.epage=2085&rft.pages=2072-2085&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2014.2369374&rft_dat=%3Cproquest_RIE%3E1706205918%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1705749481&rft_id=info:pmid/25438327&rft_ieee_id=6965621&rfr_iscdi=true |