Catalytic living ring-opening metathesis polymerization
In living ring-opening metathesis polymerization (ROMP), a transition-metal–carbene complex polymerizes ring-strained olefins with very good control of the molecular weight of the resulting polymers. Because one molecule of the initiator is required for each polymer chain, however, this type of poly...
Gespeichert in:
Veröffentlicht in: | Nature chemistry 2015-09, Vol.7 (9), p.718-723 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In living ring-opening metathesis polymerization (ROMP), a transition-metal–carbene complex polymerizes ring-strained olefins with very good control of the molecular weight of the resulting polymers. Because one molecule of the initiator is required for each polymer chain, however, this type of polymerization is expensive for widespread use. We have now designed a chain-transfer agent (CTA) capable of reducing the required amount of metal complex while still maintaining full control over the living polymerization process. This new method introduces a degenerative transfer process to ROMP. We demonstrate that substituted cyclohexene rings are good CTAs, and thereby preserve the ‘living’ character of the polymerization using catalytic quantities of the metal complex. The resulting polymers show characteristics of a living polymerization, namely narrow molecular-weight distribution, controlled molecular weights and block copolymer formation. This new technique provides access to well-defined polymers for industrial, biomedical and academic use at a fraction of the current costs and significantly reduced levels of residual ruthenium catalyst.
Ring-opening metathesis polymerization (ROMP) offers good control over dispersity, but the requirement of one initiator per chain can be expensive and problematic for purification. Now, a reversible cyclohexenyl-containing chain-transfer agent is described, thus allowing a catalytic living ROMP process to produce narrow dispersity polymers and block copolymers. |
---|---|
ISSN: | 1755-4330 1755-4349 |
DOI: | 10.1038/nchem.2320 |