Role of Oxygen Mass Transport in Rechargeable Li/O2 Batteries Operating with Ionic Liquids

The use of ionic liquid (IL)-based electrolytes and porous carbonaceous cathodes is today one of the most promising strategies for the development of rechargeable Li/O2 batteries. Enhancing Li/O2 battery cyclability at high discharge rate is a key issue for automotive applications. O2 reduction at a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2013-05, Vol.4 (9), p.1379-1382
Hauptverfasser: Monaco, Simone, Soavi, Francesca, Mastragostino, Marina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1382
container_issue 9
container_start_page 1379
container_title The journal of physical chemistry letters
container_volume 4
creator Monaco, Simone
Soavi, Francesca
Mastragostino, Marina
description The use of ionic liquid (IL)-based electrolytes and porous carbonaceous cathodes is today one of the most promising strategies for the development of rechargeable Li/O2 batteries. Enhancing Li/O2 battery cyclability at high discharge rate is a key issue for automotive applications. O2 reduction at a meso-macroporous carbon electrode in N-butyl-N-methyl pyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR14TFSI):LiTFSI 9:1 is here investigated. The study demonstrates that oxygen electrode response in IL at high discharge currents is dominated by O2 mass transport in IL. A novel configuration of flow-Li/O2 battery that operates at high discharge rate is reported.
doi_str_mv 10.1021/jz4006256
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1705475882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1705475882</sourcerecordid><originalsourceid>FETCH-LOGICAL-a156t-9195a19168d80a91f5a9fc4d806389f0a20ee5204dc1347982f91dd0872ee4cf3</originalsourceid><addsrcrecordid>eNpN0N9LwzAQB_AgipvTB_8ByYvgS12SNm3yqMNfMCmM-eJLyNrrltGlXdKi8683sik-3R18OO6-CF1ScksJo-P1V0JIynh6hIZUJiLKqODH__oBOvN-HYwkIjtFA5YywZgQQ_Q-a2rATYXzz90SLH7V3uO509a3jeuwsXgGxUq7JehFgFMzzhm-110HzoDHeQtOd8Yu8YfpVvilsaYIaNub0p-jk0rXHi4OdYTeHh_mk-domj-9TO6mkaY87SJJJddU0lSUgmhJK65lVSRhSGMhK6IZAeCMJGVB4ySTglWSlmV4hAEkRRWP0M1-b-uabQ--UxvjC6hrbaHpvaIZ4UnGhWCBXh1ov9hAqVpnNtrt1G8eAVzvgS68Wje9s-FyRYn6yVn95Rx_A6sIa2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1705475882</pqid></control><display><type>article</type><title>Role of Oxygen Mass Transport in Rechargeable Li/O2 Batteries Operating with Ionic Liquids</title><source>American Chemical Society Journals</source><creator>Monaco, Simone ; Soavi, Francesca ; Mastragostino, Marina</creator><creatorcontrib>Monaco, Simone ; Soavi, Francesca ; Mastragostino, Marina</creatorcontrib><description>The use of ionic liquid (IL)-based electrolytes and porous carbonaceous cathodes is today one of the most promising strategies for the development of rechargeable Li/O2 batteries. Enhancing Li/O2 battery cyclability at high discharge rate is a key issue for automotive applications. O2 reduction at a meso-macroporous carbon electrode in N-butyl-N-methyl pyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR14TFSI):LiTFSI 9:1 is here investigated. The study demonstrates that oxygen electrode response in IL at high discharge currents is dominated by O2 mass transport in IL. A novel configuration of flow-Li/O2 battery that operates at high discharge rate is reported.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/jz4006256</identifier><identifier>PMID: 26282288</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Energy Conversion and Storage; Energy and Charge Transport</subject><ispartof>The journal of physical chemistry letters, 2013-05, Vol.4 (9), p.1379-1382</ispartof><rights>Copyright © 2013 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jz4006256$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jz4006256$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27074,27922,27923,56736,56786</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26282288$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Monaco, Simone</creatorcontrib><creatorcontrib>Soavi, Francesca</creatorcontrib><creatorcontrib>Mastragostino, Marina</creatorcontrib><title>Role of Oxygen Mass Transport in Rechargeable Li/O2 Batteries Operating with Ionic Liquids</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>The use of ionic liquid (IL)-based electrolytes and porous carbonaceous cathodes is today one of the most promising strategies for the development of rechargeable Li/O2 batteries. Enhancing Li/O2 battery cyclability at high discharge rate is a key issue for automotive applications. O2 reduction at a meso-macroporous carbon electrode in N-butyl-N-methyl pyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR14TFSI):LiTFSI 9:1 is here investigated. The study demonstrates that oxygen electrode response in IL at high discharge currents is dominated by O2 mass transport in IL. A novel configuration of flow-Li/O2 battery that operates at high discharge rate is reported.</description><subject>Energy Conversion and Storage; Energy and Charge Transport</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpN0N9LwzAQB_AgipvTB_8ByYvgS12SNm3yqMNfMCmM-eJLyNrrltGlXdKi8683sik-3R18OO6-CF1ScksJo-P1V0JIynh6hIZUJiLKqODH__oBOvN-HYwkIjtFA5YywZgQQ_Q-a2rATYXzz90SLH7V3uO509a3jeuwsXgGxUq7JehFgFMzzhm-110HzoDHeQtOd8Yu8YfpVvilsaYIaNub0p-jk0rXHi4OdYTeHh_mk-domj-9TO6mkaY87SJJJddU0lSUgmhJK65lVSRhSGMhK6IZAeCMJGVB4ySTglWSlmV4hAEkRRWP0M1-b-uabQ--UxvjC6hrbaHpvaIZ4UnGhWCBXh1ov9hAqVpnNtrt1G8eAVzvgS68Wje9s-FyRYn6yVn95Rx_A6sIa2w</recordid><startdate>20130502</startdate><enddate>20130502</enddate><creator>Monaco, Simone</creator><creator>Soavi, Francesca</creator><creator>Mastragostino, Marina</creator><general>American Chemical Society</general><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20130502</creationdate><title>Role of Oxygen Mass Transport in Rechargeable Li/O2 Batteries Operating with Ionic Liquids</title><author>Monaco, Simone ; Soavi, Francesca ; Mastragostino, Marina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a156t-9195a19168d80a91f5a9fc4d806389f0a20ee5204dc1347982f91dd0872ee4cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Energy Conversion and Storage; Energy and Charge Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monaco, Simone</creatorcontrib><creatorcontrib>Soavi, Francesca</creatorcontrib><creatorcontrib>Mastragostino, Marina</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monaco, Simone</au><au>Soavi, Francesca</au><au>Mastragostino, Marina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of Oxygen Mass Transport in Rechargeable Li/O2 Batteries Operating with Ionic Liquids</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2013-05-02</date><risdate>2013</risdate><volume>4</volume><issue>9</issue><spage>1379</spage><epage>1382</epage><pages>1379-1382</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>The use of ionic liquid (IL)-based electrolytes and porous carbonaceous cathodes is today one of the most promising strategies for the development of rechargeable Li/O2 batteries. Enhancing Li/O2 battery cyclability at high discharge rate is a key issue for automotive applications. O2 reduction at a meso-macroporous carbon electrode in N-butyl-N-methyl pyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR14TFSI):LiTFSI 9:1 is here investigated. The study demonstrates that oxygen electrode response in IL at high discharge currents is dominated by O2 mass transport in IL. A novel configuration of flow-Li/O2 battery that operates at high discharge rate is reported.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26282288</pmid><doi>10.1021/jz4006256</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2013-05, Vol.4 (9), p.1379-1382
issn 1948-7185
1948-7185
language eng
recordid cdi_proquest_miscellaneous_1705475882
source American Chemical Society Journals
subjects Energy Conversion and Storage
Energy and Charge Transport
title Role of Oxygen Mass Transport in Rechargeable Li/O2 Batteries Operating with Ionic Liquids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T07%3A42%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20Oxygen%20Mass%20Transport%20in%20Rechargeable%20Li/O2%20Batteries%20Operating%20with%20Ionic%20Liquids&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Monaco,%20Simone&rft.date=2013-05-02&rft.volume=4&rft.issue=9&rft.spage=1379&rft.epage=1382&rft.pages=1379-1382&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/jz4006256&rft_dat=%3Cproquest_pubme%3E1705475882%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1705475882&rft_id=info:pmid/26282288&rfr_iscdi=true