Liquid-phase step-by-step growth of an iron cyanide coordination framework on LiCoO₂ particle surfaces

Surface modification of inorganic objects with metal-organic frameworks (MOFs) - organic-inorganic hybrid framework materials with infinite networks - opens wide windows for potential applications. In order to derive a target property, the key is the ability to fine tune the degree of modification....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dalton transactions : an international journal of inorganic chemistry 2015-09, Vol.44 (34), p.15279-15285
Hauptverfasser: Makiura, Rie, Teragawa, Shingo, Tsuchiyama, Kohei, Hayashi, Akitoshi, Tadanaga, Kiyoharu, Tatsumisago, Masahiro
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15285
container_issue 34
container_start_page 15279
container_title Dalton transactions : an international journal of inorganic chemistry
container_volume 44
creator Makiura, Rie
Teragawa, Shingo
Tsuchiyama, Kohei
Hayashi, Akitoshi
Tadanaga, Kiyoharu
Tatsumisago, Masahiro
description Surface modification of inorganic objects with metal-organic frameworks (MOFs) - organic-inorganic hybrid framework materials with infinite networks - opens wide windows for potential applications. In order to derive a target property, the key is the ability to fine tune the degree of modification. Solution-based step-by-step growth techniques provide excellent control of layer thickness which can be varied with the number of deposition cycles. Such techniques with MOFs have been mainly applied to flat substrates, but not to particle surfaces before. Here, we present the facile surface modification of inorganic particles with a framework compound under operationally simple ambient conditions. A solution-based sequential technique involving the alternate immersion of LiCoO2 (LCO) - a positive electrode material for a lithium ion battery - into FeCl2·4H2O and K3[Fe(CN)6] solutions results in the formation of Prussian blue (PB) nanolayers on the surface of the LCO particles (PBNL@LCO). The PB growth is finely controlled by the number of immersion cycles. An electrochemical cell with PBNL@LCO as a positive electrode material exhibits a discharge capacity close to the specific capacity of LCO. The results open a new direction for creating suitable interfacial conditions between electrode materials and electrolytes in secondary battery materials.
doi_str_mv 10.1039/c5dt00968e
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1705475745</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1705475745</sourcerecordid><originalsourceid>FETCH-LOGICAL-j313t-839880c06f4b7f44063b49e24049a8c2f81121f4abf926a67f2b4c1c3358b6f23</originalsourceid><addsrcrecordid>eNo1kLtOwzAARS0kREth4QOQR5aAX7GdEVW8pEhdYI5sxyYuSZzaiaqu_VS-hCDKdHWvjs5wAbjB6B4jWjyYvB4RKri0Z2CJmRBZQShbgMuUtggRgnJyARaEI4qFoEvQlH43-TobGpUsTKMdMn3IfhN-xrAfGxgcVD30MfTQHFTvawtNCLH2vRr9PLqoOrsP8QvOpfTrsPk-HuGg4uhNOyun6JSx6QqcO9Ume33KFfh4fnpfv2bl5uVt_VhmW4rpmElaSIkM4o5p4RhDnGpWWMIQK5Q0xEmMCXZMaVcQrrhwRDODDaW51NwRugJ3f94hht1k01h1Phnbtqq3YUoVFihnIhcsn9HbEzrpztbVEH2n4qH6f4f-ALMlZVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1705475745</pqid></control><display><type>article</type><title>Liquid-phase step-by-step growth of an iron cyanide coordination framework on LiCoO₂ particle surfaces</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Makiura, Rie ; Teragawa, Shingo ; Tsuchiyama, Kohei ; Hayashi, Akitoshi ; Tadanaga, Kiyoharu ; Tatsumisago, Masahiro</creator><creatorcontrib>Makiura, Rie ; Teragawa, Shingo ; Tsuchiyama, Kohei ; Hayashi, Akitoshi ; Tadanaga, Kiyoharu ; Tatsumisago, Masahiro</creatorcontrib><description>Surface modification of inorganic objects with metal-organic frameworks (MOFs) - organic-inorganic hybrid framework materials with infinite networks - opens wide windows for potential applications. In order to derive a target property, the key is the ability to fine tune the degree of modification. Solution-based step-by-step growth techniques provide excellent control of layer thickness which can be varied with the number of deposition cycles. Such techniques with MOFs have been mainly applied to flat substrates, but not to particle surfaces before. Here, we present the facile surface modification of inorganic particles with a framework compound under operationally simple ambient conditions. A solution-based sequential technique involving the alternate immersion of LiCoO2 (LCO) - a positive electrode material for a lithium ion battery - into FeCl2·4H2O and K3[Fe(CN)6] solutions results in the formation of Prussian blue (PB) nanolayers on the surface of the LCO particles (PBNL@LCO). The PB growth is finely controlled by the number of immersion cycles. An electrochemical cell with PBNL@LCO as a positive electrode material exhibits a discharge capacity close to the specific capacity of LCO. The results open a new direction for creating suitable interfacial conditions between electrode materials and electrolytes in secondary battery materials.</description><identifier>EISSN: 1477-9234</identifier><identifier>DOI: 10.1039/c5dt00968e</identifier><identifier>PMID: 26031773</identifier><language>eng</language><publisher>England</publisher><ispartof>Dalton transactions : an international journal of inorganic chemistry, 2015-09, Vol.44 (34), p.15279-15285</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26031773$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Makiura, Rie</creatorcontrib><creatorcontrib>Teragawa, Shingo</creatorcontrib><creatorcontrib>Tsuchiyama, Kohei</creatorcontrib><creatorcontrib>Hayashi, Akitoshi</creatorcontrib><creatorcontrib>Tadanaga, Kiyoharu</creatorcontrib><creatorcontrib>Tatsumisago, Masahiro</creatorcontrib><title>Liquid-phase step-by-step growth of an iron cyanide coordination framework on LiCoO₂ particle surfaces</title><title>Dalton transactions : an international journal of inorganic chemistry</title><addtitle>Dalton Trans</addtitle><description>Surface modification of inorganic objects with metal-organic frameworks (MOFs) - organic-inorganic hybrid framework materials with infinite networks - opens wide windows for potential applications. In order to derive a target property, the key is the ability to fine tune the degree of modification. Solution-based step-by-step growth techniques provide excellent control of layer thickness which can be varied with the number of deposition cycles. Such techniques with MOFs have been mainly applied to flat substrates, but not to particle surfaces before. Here, we present the facile surface modification of inorganic particles with a framework compound under operationally simple ambient conditions. A solution-based sequential technique involving the alternate immersion of LiCoO2 (LCO) - a positive electrode material for a lithium ion battery - into FeCl2·4H2O and K3[Fe(CN)6] solutions results in the formation of Prussian blue (PB) nanolayers on the surface of the LCO particles (PBNL@LCO). The PB growth is finely controlled by the number of immersion cycles. An electrochemical cell with PBNL@LCO as a positive electrode material exhibits a discharge capacity close to the specific capacity of LCO. The results open a new direction for creating suitable interfacial conditions between electrode materials and electrolytes in secondary battery materials.</description><issn>1477-9234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo1kLtOwzAARS0kREth4QOQR5aAX7GdEVW8pEhdYI5sxyYuSZzaiaqu_VS-hCDKdHWvjs5wAbjB6B4jWjyYvB4RKri0Z2CJmRBZQShbgMuUtggRgnJyARaEI4qFoEvQlH43-TobGpUsTKMdMn3IfhN-xrAfGxgcVD30MfTQHFTvawtNCLH2vRr9PLqoOrsP8QvOpfTrsPk-HuGg4uhNOyun6JSx6QqcO9Ume33KFfh4fnpfv2bl5uVt_VhmW4rpmElaSIkM4o5p4RhDnGpWWMIQK5Q0xEmMCXZMaVcQrrhwRDODDaW51NwRugJ3f94hht1k01h1Phnbtqq3YUoVFihnIhcsn9HbEzrpztbVEH2n4qH6f4f-ALMlZVw</recordid><startdate>20150914</startdate><enddate>20150914</enddate><creator>Makiura, Rie</creator><creator>Teragawa, Shingo</creator><creator>Tsuchiyama, Kohei</creator><creator>Hayashi, Akitoshi</creator><creator>Tadanaga, Kiyoharu</creator><creator>Tatsumisago, Masahiro</creator><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20150914</creationdate><title>Liquid-phase step-by-step growth of an iron cyanide coordination framework on LiCoO₂ particle surfaces</title><author>Makiura, Rie ; Teragawa, Shingo ; Tsuchiyama, Kohei ; Hayashi, Akitoshi ; Tadanaga, Kiyoharu ; Tatsumisago, Masahiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j313t-839880c06f4b7f44063b49e24049a8c2f81121f4abf926a67f2b4c1c3358b6f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Makiura, Rie</creatorcontrib><creatorcontrib>Teragawa, Shingo</creatorcontrib><creatorcontrib>Tsuchiyama, Kohei</creatorcontrib><creatorcontrib>Hayashi, Akitoshi</creatorcontrib><creatorcontrib>Tadanaga, Kiyoharu</creatorcontrib><creatorcontrib>Tatsumisago, Masahiro</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Makiura, Rie</au><au>Teragawa, Shingo</au><au>Tsuchiyama, Kohei</au><au>Hayashi, Akitoshi</au><au>Tadanaga, Kiyoharu</au><au>Tatsumisago, Masahiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Liquid-phase step-by-step growth of an iron cyanide coordination framework on LiCoO₂ particle surfaces</atitle><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle><addtitle>Dalton Trans</addtitle><date>2015-09-14</date><risdate>2015</risdate><volume>44</volume><issue>34</issue><spage>15279</spage><epage>15285</epage><pages>15279-15285</pages><eissn>1477-9234</eissn><abstract>Surface modification of inorganic objects with metal-organic frameworks (MOFs) - organic-inorganic hybrid framework materials with infinite networks - opens wide windows for potential applications. In order to derive a target property, the key is the ability to fine tune the degree of modification. Solution-based step-by-step growth techniques provide excellent control of layer thickness which can be varied with the number of deposition cycles. Such techniques with MOFs have been mainly applied to flat substrates, but not to particle surfaces before. Here, we present the facile surface modification of inorganic particles with a framework compound under operationally simple ambient conditions. A solution-based sequential technique involving the alternate immersion of LiCoO2 (LCO) - a positive electrode material for a lithium ion battery - into FeCl2·4H2O and K3[Fe(CN)6] solutions results in the formation of Prussian blue (PB) nanolayers on the surface of the LCO particles (PBNL@LCO). The PB growth is finely controlled by the number of immersion cycles. An electrochemical cell with PBNL@LCO as a positive electrode material exhibits a discharge capacity close to the specific capacity of LCO. The results open a new direction for creating suitable interfacial conditions between electrode materials and electrolytes in secondary battery materials.</abstract><cop>England</cop><pmid>26031773</pmid><doi>10.1039/c5dt00968e</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 1477-9234
ispartof Dalton transactions : an international journal of inorganic chemistry, 2015-09, Vol.44 (34), p.15279-15285
issn 1477-9234
language eng
recordid cdi_proquest_miscellaneous_1705475745
source Royal Society Of Chemistry Journals; Alma/SFX Local Collection
title Liquid-phase step-by-step growth of an iron cyanide coordination framework on LiCoO₂ particle surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T01%3A37%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Liquid-phase%20step-by-step%20growth%20of%20an%20iron%20cyanide%20coordination%20framework%20on%20LiCoO%E2%82%82%20particle%20surfaces&rft.jtitle=Dalton%20transactions%20:%20an%20international%20journal%20of%20inorganic%20chemistry&rft.au=Makiura,%20Rie&rft.date=2015-09-14&rft.volume=44&rft.issue=34&rft.spage=15279&rft.epage=15285&rft.pages=15279-15285&rft.eissn=1477-9234&rft_id=info:doi/10.1039/c5dt00968e&rft_dat=%3Cproquest_pubme%3E1705475745%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1705475745&rft_id=info:pmid/26031773&rfr_iscdi=true