The intracellular phosphorylation of (−)-2′-deoxy-3′-thiacytidine (3TC) and the incorporation of 3TC 5′-monophosphate into DNA by HIV-1 reverse transcriptase and human DNA polymerase γ

(−)-2′-deoxy-3′-thiacytidine (3TC) † † 3TC is a trademark of Glaxo Group Ltd., Glaxo House, Greenford Road, Greenford, Middlesex UB6 OHE, U.K. has been shown to be a potent, selective inhibitor of HIV replication in vitro, which requires phosphorylation to its 5′-triphosphate for antiviral activity....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical pharmacology 1995-09, Vol.50 (7), p.1043-1051
Hauptverfasser: Gray, Norman M., Marr, Clara L.P., Penn, Charles R., Cameron, Janet M., Bethell, Richard C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1051
container_issue 7
container_start_page 1043
container_title Biochemical pharmacology
container_volume 50
creator Gray, Norman M.
Marr, Clara L.P.
Penn, Charles R.
Cameron, Janet M.
Bethell, Richard C.
description (−)-2′-deoxy-3′-thiacytidine (3TC) † † 3TC is a trademark of Glaxo Group Ltd., Glaxo House, Greenford Road, Greenford, Middlesex UB6 OHE, U.K. has been shown to be a potent, selective inhibitor of HIV replication in vitro, which requires phosphorylation to its 5′-triphosphate for antiviral activity. The intracellular concentration of 3TC 5′-triphosphate in phytohaemagglutinin (PHA)-stimulated peripheral blood lymphocytes (PBL) shows a linear dependence on the extracellular concentration of 3TC up to an extracellular 3TC concentration of 10 μM. At this extracellular concentration of 3TC, the resulting intracellular concentration of 3TC 5′-triphosphate is 5 μM. This value is similar to the inhibition constant ( K i) values for the competitive inhibition of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase and human DNA polymerases (10–16 μM) by 3TC 5′-triphosphate. Since the concentration of 3TC producing 90% inhibition (IC 90) of HIV replication in PBLs has been reported to be 76 nM, the antiviral activity of 3TC requires intracellular concentrations of 3TC 5′-triphosphate, which would result in very little inhibition of reverse transcriptase if its sole mode of action was competitive inhibition. This apparent discrepency may be explained by the ability of 3TC 5′-triphosphate to act as a substrate for reverse transcriptase. Primer extension assays have shown that 3TC 5′-triphosphate is a substrate for HIV-1 reverse transcriptase and DNA polymerase γ, resulting in the incorporation of 3TC 5′-monophosphate into DNA. In the case of DNA polymerase γ, the product of this reaction (i.e. double-stranded DNA with 3TC 5′-monophosphate incorporated at the 3′-terminus of the primer strand) is also a substrate for the 3′-5′ exonuclease activity of this enzyme. This may explain the low levels of mitochondrial toxicity observed with 3TC.
doi_str_mv 10.1016/0006-2952(95)96620-A
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17054132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>000629529596620A</els_id><sourcerecordid>17054132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-252c1ae9a84b92c26fb93a09499cca6a3e7316db9a285e5d0bddfc8ccdcb32de3</originalsourceid><addsrcrecordid>eNp9UU2O0zAUjhBoKAM3AMkLhNpFwD-JE2-QqvIzI41gU9hajv2iGiVxsN0R2bFkzVHgBFyAQ8xJcNqqSxaW_fz9vKf3ZdlTgl8STPgrjDHPqSjpUpQrwTnF-fpetiB1xdI3r-9nizPlYfYohC9zWXNykV1UZVVyjhfZn-0OkB2iVxq6bt8pj8adC-n4qVPRugG5Fi3vfvxc5fTu-6_cgPs25Wx-xp1VeorW2AHQkm03K6QGg-LBUTs_On92SCgqZ1HvBnfsoOKhs0NvPqxRM6Gr6885QR5uwQdAaaIhaG_HqFI1--72vRoO5NF1Uw9-Bv7-fpw9aFUX4Mnpvsw-vXu73VzlNx_fX2_WN7kuSBVzWlJNFAhVF42gmvK2EUxhUQihteKKQcUIN41QtC6hNLgxptW11kY3jBpgl9mLo-_o3dc9hCh7G-alqQHcPkhS4bIgjCZicSRq70Lw0MrR2175SRIs5-TknIOcY5GilIfk5DrJnp38900P5iw6RZXw5ydcBa26Nu1H23Cm0VoUnLNEe32kQdrFrQUvg7YwaDDWg47SOPv_Of4BegW7mg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17054132</pqid></control><display><type>article</type><title>The intracellular phosphorylation of (−)-2′-deoxy-3′-thiacytidine (3TC) and the incorporation of 3TC 5′-monophosphate into DNA by HIV-1 reverse transcriptase and human DNA polymerase γ</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Gray, Norman M. ; Marr, Clara L.P. ; Penn, Charles R. ; Cameron, Janet M. ; Bethell, Richard C.</creator><creatorcontrib>Gray, Norman M. ; Marr, Clara L.P. ; Penn, Charles R. ; Cameron, Janet M. ; Bethell, Richard C.</creatorcontrib><description>(−)-2′-deoxy-3′-thiacytidine (3TC) † † 3TC is a trademark of Glaxo Group Ltd., Glaxo House, Greenford Road, Greenford, Middlesex UB6 OHE, U.K. has been shown to be a potent, selective inhibitor of HIV replication in vitro, which requires phosphorylation to its 5′-triphosphate for antiviral activity. The intracellular concentration of 3TC 5′-triphosphate in phytohaemagglutinin (PHA)-stimulated peripheral blood lymphocytes (PBL) shows a linear dependence on the extracellular concentration of 3TC up to an extracellular 3TC concentration of 10 μM. At this extracellular concentration of 3TC, the resulting intracellular concentration of 3TC 5′-triphosphate is 5 μM. This value is similar to the inhibition constant ( K i) values for the competitive inhibition of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase and human DNA polymerases (10–16 μM) by 3TC 5′-triphosphate. Since the concentration of 3TC producing 90% inhibition (IC 90) of HIV replication in PBLs has been reported to be 76 nM, the antiviral activity of 3TC requires intracellular concentrations of 3TC 5′-triphosphate, which would result in very little inhibition of reverse transcriptase if its sole mode of action was competitive inhibition. This apparent discrepency may be explained by the ability of 3TC 5′-triphosphate to act as a substrate for reverse transcriptase. Primer extension assays have shown that 3TC 5′-triphosphate is a substrate for HIV-1 reverse transcriptase and DNA polymerase γ, resulting in the incorporation of 3TC 5′-monophosphate into DNA. In the case of DNA polymerase γ, the product of this reaction (i.e. double-stranded DNA with 3TC 5′-monophosphate incorporated at the 3′-terminus of the primer strand) is also a substrate for the 3′-5′ exonuclease activity of this enzyme. This may explain the low levels of mitochondrial toxicity observed with 3TC.</description><identifier>ISSN: 0006-2952</identifier><identifier>EISSN: 1873-2968</identifier><identifier>DOI: 10.1016/0006-2952(95)96620-A</identifier><identifier>PMID: 7575660</identifier><identifier>CODEN: BCPCA6</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>3TC ; 3TC 5′-triphosphate ; Antibiotics. Antiinfectious agents. Antiparasitic agents ; Antiviral agents ; Base Sequence ; Biological and medical sciences ; chain termination ; Deoxycytidine Monophosphate - analogs &amp; derivatives ; Deoxycytidine Monophosphate - metabolism ; DNA - metabolism ; DNA Polymerase III - metabolism ; DNA polymerase γ ; HeLa Cells ; HIV Reverse Transcriptase ; HIV-1 reverse transcriptase ; human immunodeficiency virus 1 ; Humans ; intracellular phosphorylation ; Kinetics ; Lamivudine ; Lymphocytes - drug effects ; Lymphocytes - metabolism ; Medical sciences ; Molecular Sequence Data ; Pharmacology. Drug treatments ; Phosphorylation ; Phytohemagglutinins ; Reverse Transcriptase Inhibitors - metabolism ; RNA-Directed DNA Polymerase - metabolism ; Stereoisomerism ; Zalcitabine - analogs &amp; derivatives ; Zalcitabine - metabolism ; Zalcitabine - pharmacology</subject><ispartof>Biochemical pharmacology, 1995-09, Vol.50 (7), p.1043-1051</ispartof><rights>1995</rights><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-252c1ae9a84b92c26fb93a09499cca6a3e7316db9a285e5d0bddfc8ccdcb32de3</citedby><cites>FETCH-LOGICAL-c417t-252c1ae9a84b92c26fb93a09499cca6a3e7316db9a285e5d0bddfc8ccdcb32de3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0006-2952(95)96620-A$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3552,27931,27932,46002</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2894663$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7575660$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gray, Norman M.</creatorcontrib><creatorcontrib>Marr, Clara L.P.</creatorcontrib><creatorcontrib>Penn, Charles R.</creatorcontrib><creatorcontrib>Cameron, Janet M.</creatorcontrib><creatorcontrib>Bethell, Richard C.</creatorcontrib><title>The intracellular phosphorylation of (−)-2′-deoxy-3′-thiacytidine (3TC) and the incorporation of 3TC 5′-monophosphate into DNA by HIV-1 reverse transcriptase and human DNA polymerase γ</title><title>Biochemical pharmacology</title><addtitle>Biochem Pharmacol</addtitle><description>(−)-2′-deoxy-3′-thiacytidine (3TC) † † 3TC is a trademark of Glaxo Group Ltd., Glaxo House, Greenford Road, Greenford, Middlesex UB6 OHE, U.K. has been shown to be a potent, selective inhibitor of HIV replication in vitro, which requires phosphorylation to its 5′-triphosphate for antiviral activity. The intracellular concentration of 3TC 5′-triphosphate in phytohaemagglutinin (PHA)-stimulated peripheral blood lymphocytes (PBL) shows a linear dependence on the extracellular concentration of 3TC up to an extracellular 3TC concentration of 10 μM. At this extracellular concentration of 3TC, the resulting intracellular concentration of 3TC 5′-triphosphate is 5 μM. This value is similar to the inhibition constant ( K i) values for the competitive inhibition of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase and human DNA polymerases (10–16 μM) by 3TC 5′-triphosphate. Since the concentration of 3TC producing 90% inhibition (IC 90) of HIV replication in PBLs has been reported to be 76 nM, the antiviral activity of 3TC requires intracellular concentrations of 3TC 5′-triphosphate, which would result in very little inhibition of reverse transcriptase if its sole mode of action was competitive inhibition. This apparent discrepency may be explained by the ability of 3TC 5′-triphosphate to act as a substrate for reverse transcriptase. Primer extension assays have shown that 3TC 5′-triphosphate is a substrate for HIV-1 reverse transcriptase and DNA polymerase γ, resulting in the incorporation of 3TC 5′-monophosphate into DNA. In the case of DNA polymerase γ, the product of this reaction (i.e. double-stranded DNA with 3TC 5′-monophosphate incorporated at the 3′-terminus of the primer strand) is also a substrate for the 3′-5′ exonuclease activity of this enzyme. This may explain the low levels of mitochondrial toxicity observed with 3TC.</description><subject>3TC</subject><subject>3TC 5′-triphosphate</subject><subject>Antibiotics. Antiinfectious agents. Antiparasitic agents</subject><subject>Antiviral agents</subject><subject>Base Sequence</subject><subject>Biological and medical sciences</subject><subject>chain termination</subject><subject>Deoxycytidine Monophosphate - analogs &amp; derivatives</subject><subject>Deoxycytidine Monophosphate - metabolism</subject><subject>DNA - metabolism</subject><subject>DNA Polymerase III - metabolism</subject><subject>DNA polymerase γ</subject><subject>HeLa Cells</subject><subject>HIV Reverse Transcriptase</subject><subject>HIV-1 reverse transcriptase</subject><subject>human immunodeficiency virus 1</subject><subject>Humans</subject><subject>intracellular phosphorylation</subject><subject>Kinetics</subject><subject>Lamivudine</subject><subject>Lymphocytes - drug effects</subject><subject>Lymphocytes - metabolism</subject><subject>Medical sciences</subject><subject>Molecular Sequence Data</subject><subject>Pharmacology. Drug treatments</subject><subject>Phosphorylation</subject><subject>Phytohemagglutinins</subject><subject>Reverse Transcriptase Inhibitors - metabolism</subject><subject>RNA-Directed DNA Polymerase - metabolism</subject><subject>Stereoisomerism</subject><subject>Zalcitabine - analogs &amp; derivatives</subject><subject>Zalcitabine - metabolism</subject><subject>Zalcitabine - pharmacology</subject><issn>0006-2952</issn><issn>1873-2968</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU2O0zAUjhBoKAM3AMkLhNpFwD-JE2-QqvIzI41gU9hajv2iGiVxsN0R2bFkzVHgBFyAQ8xJcNqqSxaW_fz9vKf3ZdlTgl8STPgrjDHPqSjpUpQrwTnF-fpetiB1xdI3r-9nizPlYfYohC9zWXNykV1UZVVyjhfZn-0OkB2iVxq6bt8pj8adC-n4qVPRugG5Fi3vfvxc5fTu-6_cgPs25Wx-xp1VeorW2AHQkm03K6QGg-LBUTs_On92SCgqZ1HvBnfsoOKhs0NvPqxRM6Gr6885QR5uwQdAaaIhaG_HqFI1--72vRoO5NF1Uw9-Bv7-fpw9aFUX4Mnpvsw-vXu73VzlNx_fX2_WN7kuSBVzWlJNFAhVF42gmvK2EUxhUQihteKKQcUIN41QtC6hNLgxptW11kY3jBpgl9mLo-_o3dc9hCh7G-alqQHcPkhS4bIgjCZicSRq70Lw0MrR2175SRIs5-TknIOcY5GilIfk5DrJnp38900P5iw6RZXw5ydcBa26Nu1H23Cm0VoUnLNEe32kQdrFrQUvg7YwaDDWg47SOPv_Of4BegW7mg</recordid><startdate>19950928</startdate><enddate>19950928</enddate><creator>Gray, Norman M.</creator><creator>Marr, Clara L.P.</creator><creator>Penn, Charles R.</creator><creator>Cameron, Janet M.</creator><creator>Bethell, Richard C.</creator><general>Elsevier Inc</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7U9</scope><scope>H94</scope></search><sort><creationdate>19950928</creationdate><title>The intracellular phosphorylation of (−)-2′-deoxy-3′-thiacytidine (3TC) and the incorporation of 3TC 5′-monophosphate into DNA by HIV-1 reverse transcriptase and human DNA polymerase γ</title><author>Gray, Norman M. ; Marr, Clara L.P. ; Penn, Charles R. ; Cameron, Janet M. ; Bethell, Richard C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-252c1ae9a84b92c26fb93a09499cca6a3e7316db9a285e5d0bddfc8ccdcb32de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>3TC</topic><topic>3TC 5′-triphosphate</topic><topic>Antibiotics. Antiinfectious agents. Antiparasitic agents</topic><topic>Antiviral agents</topic><topic>Base Sequence</topic><topic>Biological and medical sciences</topic><topic>chain termination</topic><topic>Deoxycytidine Monophosphate - analogs &amp; derivatives</topic><topic>Deoxycytidine Monophosphate - metabolism</topic><topic>DNA - metabolism</topic><topic>DNA Polymerase III - metabolism</topic><topic>DNA polymerase γ</topic><topic>HeLa Cells</topic><topic>HIV Reverse Transcriptase</topic><topic>HIV-1 reverse transcriptase</topic><topic>human immunodeficiency virus 1</topic><topic>Humans</topic><topic>intracellular phosphorylation</topic><topic>Kinetics</topic><topic>Lamivudine</topic><topic>Lymphocytes - drug effects</topic><topic>Lymphocytes - metabolism</topic><topic>Medical sciences</topic><topic>Molecular Sequence Data</topic><topic>Pharmacology. Drug treatments</topic><topic>Phosphorylation</topic><topic>Phytohemagglutinins</topic><topic>Reverse Transcriptase Inhibitors - metabolism</topic><topic>RNA-Directed DNA Polymerase - metabolism</topic><topic>Stereoisomerism</topic><topic>Zalcitabine - analogs &amp; derivatives</topic><topic>Zalcitabine - metabolism</topic><topic>Zalcitabine - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gray, Norman M.</creatorcontrib><creatorcontrib>Marr, Clara L.P.</creatorcontrib><creatorcontrib>Penn, Charles R.</creatorcontrib><creatorcontrib>Cameron, Janet M.</creatorcontrib><creatorcontrib>Bethell, Richard C.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><jtitle>Biochemical pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gray, Norman M.</au><au>Marr, Clara L.P.</au><au>Penn, Charles R.</au><au>Cameron, Janet M.</au><au>Bethell, Richard C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The intracellular phosphorylation of (−)-2′-deoxy-3′-thiacytidine (3TC) and the incorporation of 3TC 5′-monophosphate into DNA by HIV-1 reverse transcriptase and human DNA polymerase γ</atitle><jtitle>Biochemical pharmacology</jtitle><addtitle>Biochem Pharmacol</addtitle><date>1995-09-28</date><risdate>1995</risdate><volume>50</volume><issue>7</issue><spage>1043</spage><epage>1051</epage><pages>1043-1051</pages><issn>0006-2952</issn><eissn>1873-2968</eissn><coden>BCPCA6</coden><abstract>(−)-2′-deoxy-3′-thiacytidine (3TC) † † 3TC is a trademark of Glaxo Group Ltd., Glaxo House, Greenford Road, Greenford, Middlesex UB6 OHE, U.K. has been shown to be a potent, selective inhibitor of HIV replication in vitro, which requires phosphorylation to its 5′-triphosphate for antiviral activity. The intracellular concentration of 3TC 5′-triphosphate in phytohaemagglutinin (PHA)-stimulated peripheral blood lymphocytes (PBL) shows a linear dependence on the extracellular concentration of 3TC up to an extracellular 3TC concentration of 10 μM. At this extracellular concentration of 3TC, the resulting intracellular concentration of 3TC 5′-triphosphate is 5 μM. This value is similar to the inhibition constant ( K i) values for the competitive inhibition of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase and human DNA polymerases (10–16 μM) by 3TC 5′-triphosphate. Since the concentration of 3TC producing 90% inhibition (IC 90) of HIV replication in PBLs has been reported to be 76 nM, the antiviral activity of 3TC requires intracellular concentrations of 3TC 5′-triphosphate, which would result in very little inhibition of reverse transcriptase if its sole mode of action was competitive inhibition. This apparent discrepency may be explained by the ability of 3TC 5′-triphosphate to act as a substrate for reverse transcriptase. Primer extension assays have shown that 3TC 5′-triphosphate is a substrate for HIV-1 reverse transcriptase and DNA polymerase γ, resulting in the incorporation of 3TC 5′-monophosphate into DNA. In the case of DNA polymerase γ, the product of this reaction (i.e. double-stranded DNA with 3TC 5′-monophosphate incorporated at the 3′-terminus of the primer strand) is also a substrate for the 3′-5′ exonuclease activity of this enzyme. This may explain the low levels of mitochondrial toxicity observed with 3TC.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><pmid>7575660</pmid><doi>10.1016/0006-2952(95)96620-A</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-2952
ispartof Biochemical pharmacology, 1995-09, Vol.50 (7), p.1043-1051
issn 0006-2952
1873-2968
language eng
recordid cdi_proquest_miscellaneous_17054132
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects 3TC
3TC 5′-triphosphate
Antibiotics. Antiinfectious agents. Antiparasitic agents
Antiviral agents
Base Sequence
Biological and medical sciences
chain termination
Deoxycytidine Monophosphate - analogs & derivatives
Deoxycytidine Monophosphate - metabolism
DNA - metabolism
DNA Polymerase III - metabolism
DNA polymerase γ
HeLa Cells
HIV Reverse Transcriptase
HIV-1 reverse transcriptase
human immunodeficiency virus 1
Humans
intracellular phosphorylation
Kinetics
Lamivudine
Lymphocytes - drug effects
Lymphocytes - metabolism
Medical sciences
Molecular Sequence Data
Pharmacology. Drug treatments
Phosphorylation
Phytohemagglutinins
Reverse Transcriptase Inhibitors - metabolism
RNA-Directed DNA Polymerase - metabolism
Stereoisomerism
Zalcitabine - analogs & derivatives
Zalcitabine - metabolism
Zalcitabine - pharmacology
title The intracellular phosphorylation of (−)-2′-deoxy-3′-thiacytidine (3TC) and the incorporation of 3TC 5′-monophosphate into DNA by HIV-1 reverse transcriptase and human DNA polymerase γ
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T10%3A34%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20intracellular%20phosphorylation%20of%20(%E2%88%92)-2%E2%80%B2-deoxy-3%E2%80%B2-thiacytidine%20(3TC)%20and%20the%20incorporation%20of%203TC%205%E2%80%B2-monophosphate%20into%20DNA%20by%20HIV-1%20reverse%20transcriptase%20and%20human%20DNA%20polymerase%20%CE%B3&rft.jtitle=Biochemical%20pharmacology&rft.au=Gray,%20Norman%20M.&rft.date=1995-09-28&rft.volume=50&rft.issue=7&rft.spage=1043&rft.epage=1051&rft.pages=1043-1051&rft.issn=0006-2952&rft.eissn=1873-2968&rft.coden=BCPCA6&rft_id=info:doi/10.1016/0006-2952(95)96620-A&rft_dat=%3Cproquest_cross%3E17054132%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17054132&rft_id=info:pmid/7575660&rft_els_id=000629529596620A&rfr_iscdi=true