Superelevation Design for Sharp Horizontal Curves on Steep Grades
The objective of this study was to develop superelevation criteria for sharp horizontal curves on steep grades. Field studies were undertaken and vehicle dynamics simulations (point mass, bicycle, and multibody) were performed to investigate combinations of horizontal curve and vertical grade design...
Gespeichert in:
Veröffentlicht in: | Transportation research record 2014-01, Vol.2436 (1), p.81-91 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 91 |
---|---|
container_issue | 1 |
container_start_page | 81 |
container_title | Transportation research record |
container_volume | 2436 |
creator | Torbic, Darren J. Donnell, Eric T. Brennan, Sean N. Brown, Alexander O'Laughlin, Mitchell K. Bauer, Karin M. |
description | The objective of this study was to develop superelevation criteria for sharp horizontal curves on steep grades. Field studies were undertaken and vehicle dynamics simulations (point mass, bicycle, and multibody) were performed to investigate combinations of horizontal curve and vertical grade design criteria. The vehicle dynamics simulations used AASHTO design criteria and field-measured data to investigate the safety margins against skidding and rollover for several vehicle types on sharp horizontal curves with steep grades. Research results indicated that for a simple horizontal curve, the maximum rate of super elevation should not exceed 12% on a downgrade. A spiral curve transition is recommended if the maximum superelevation rate is greater than 12%. On upgrades of 4% and greater, the maximum superelevation rate should be limited to 9% for minimum-radius curves under certain conditions. The superelevation attained at the point of curve entry should be checked and compared with a lateral friction margin condition so that the lateral friction margin on curve entry is not less than the margin within the curve. On multilane highways, the “Stay in Lane” sign should be installed in advance of sharp horizontal curves on steep downgrades. |
doi_str_mv | 10.3141/2436-09 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1705069122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.3141_2436-09</sage_id><sourcerecordid>1705069122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-79d31b788f6ad7c6d8ab6aa0c7bc39d183041255da0f5417a81bf17fa6383cd93</originalsourceid><addsrcrecordid>eNqF0L1OwzAUBWALgUQpiFfIgARLwNd2_DNWBVqkSgyB2bpJnJIqjYOdVIKnp1XZGJjO8ulc3UPINdB7DgIemOAypeaETBhIkwqasVMyoVxCCkbDObmIcUMp50LxCZnlY--Ca90Oh8Z3yaOLzbpLah-S_ANDnyx9aL59N2CbzMewczHZq3xwrk8WASsXL8lZjW10V785Je_PT2_zZbp6XbzMZ6u05EIPqTIVh0JpXUusVCkrjYVEpKUqSm4q0JwKYFlWIa0zAQo1FDWoGiXXvKwMn5K7Y28f_Ofo4mC3TSxd22Ln_BgtKJpRaYCx_6mUxlAmGOzp7ZGWwccYXG370GwxfFmg9rCnPexp6eH-zVFGXDu78WPo9u_-YT_PAHE8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1669902421</pqid></control><display><type>article</type><title>Superelevation Design for Sharp Horizontal Curves on Steep Grades</title><source>Access via SAGE</source><creator>Torbic, Darren J. ; Donnell, Eric T. ; Brennan, Sean N. ; Brown, Alexander ; O'Laughlin, Mitchell K. ; Bauer, Karin M.</creator><creatorcontrib>Torbic, Darren J. ; Donnell, Eric T. ; Brennan, Sean N. ; Brown, Alexander ; O'Laughlin, Mitchell K. ; Bauer, Karin M.</creatorcontrib><description>The objective of this study was to develop superelevation criteria for sharp horizontal curves on steep grades. Field studies were undertaken and vehicle dynamics simulations (point mass, bicycle, and multibody) were performed to investigate combinations of horizontal curve and vertical grade design criteria. The vehicle dynamics simulations used AASHTO design criteria and field-measured data to investigate the safety margins against skidding and rollover for several vehicle types on sharp horizontal curves with steep grades. Research results indicated that for a simple horizontal curve, the maximum rate of super elevation should not exceed 12% on a downgrade. A spiral curve transition is recommended if the maximum superelevation rate is greater than 12%. On upgrades of 4% and greater, the maximum superelevation rate should be limited to 9% for minimum-radius curves under certain conditions. The superelevation attained at the point of curve entry should be checked and compared with a lateral friction margin condition so that the lateral friction margin on curve entry is not less than the margin within the curve. On multilane highways, the “Stay in Lane” sign should be installed in advance of sharp horizontal curves on steep downgrades.</description><identifier>ISSN: 0361-1981</identifier><identifier>EISSN: 2169-4052</identifier><identifier>DOI: 10.3141/2436-09</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Criteria ; Dynamic tests ; Dynamics ; Friction ; Horizontal ; Simulation ; Transportation ; Vehicles</subject><ispartof>Transportation research record, 2014-01, Vol.2436 (1), p.81-91</ispartof><rights>2014 National Academy of Sciences</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-79d31b788f6ad7c6d8ab6aa0c7bc39d183041255da0f5417a81bf17fa6383cd93</citedby><cites>FETCH-LOGICAL-c348t-79d31b788f6ad7c6d8ab6aa0c7bc39d183041255da0f5417a81bf17fa6383cd93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.3141/2436-09$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.3141/2436-09$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Torbic, Darren J.</creatorcontrib><creatorcontrib>Donnell, Eric T.</creatorcontrib><creatorcontrib>Brennan, Sean N.</creatorcontrib><creatorcontrib>Brown, Alexander</creatorcontrib><creatorcontrib>O'Laughlin, Mitchell K.</creatorcontrib><creatorcontrib>Bauer, Karin M.</creatorcontrib><title>Superelevation Design for Sharp Horizontal Curves on Steep Grades</title><title>Transportation research record</title><description>The objective of this study was to develop superelevation criteria for sharp horizontal curves on steep grades. Field studies were undertaken and vehicle dynamics simulations (point mass, bicycle, and multibody) were performed to investigate combinations of horizontal curve and vertical grade design criteria. The vehicle dynamics simulations used AASHTO design criteria and field-measured data to investigate the safety margins against skidding and rollover for several vehicle types on sharp horizontal curves with steep grades. Research results indicated that for a simple horizontal curve, the maximum rate of super elevation should not exceed 12% on a downgrade. A spiral curve transition is recommended if the maximum superelevation rate is greater than 12%. On upgrades of 4% and greater, the maximum superelevation rate should be limited to 9% for minimum-radius curves under certain conditions. The superelevation attained at the point of curve entry should be checked and compared with a lateral friction margin condition so that the lateral friction margin on curve entry is not less than the margin within the curve. On multilane highways, the “Stay in Lane” sign should be installed in advance of sharp horizontal curves on steep downgrades.</description><subject>Criteria</subject><subject>Dynamic tests</subject><subject>Dynamics</subject><subject>Friction</subject><subject>Horizontal</subject><subject>Simulation</subject><subject>Transportation</subject><subject>Vehicles</subject><issn>0361-1981</issn><issn>2169-4052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqF0L1OwzAUBWALgUQpiFfIgARLwNd2_DNWBVqkSgyB2bpJnJIqjYOdVIKnp1XZGJjO8ulc3UPINdB7DgIemOAypeaETBhIkwqasVMyoVxCCkbDObmIcUMp50LxCZnlY--Ca90Oh8Z3yaOLzbpLah-S_ANDnyx9aL59N2CbzMewczHZq3xwrk8WASsXL8lZjW10V785Je_PT2_zZbp6XbzMZ6u05EIPqTIVh0JpXUusVCkrjYVEpKUqSm4q0JwKYFlWIa0zAQo1FDWoGiXXvKwMn5K7Y28f_Ofo4mC3TSxd22Ln_BgtKJpRaYCx_6mUxlAmGOzp7ZGWwccYXG370GwxfFmg9rCnPexp6eH-zVFGXDu78WPo9u_-YT_PAHE8</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Torbic, Darren J.</creator><creator>Donnell, Eric T.</creator><creator>Brennan, Sean N.</creator><creator>Brown, Alexander</creator><creator>O'Laughlin, Mitchell K.</creator><creator>Bauer, Karin M.</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>7T2</scope><scope>7U2</scope></search><sort><creationdate>201401</creationdate><title>Superelevation Design for Sharp Horizontal Curves on Steep Grades</title><author>Torbic, Darren J. ; Donnell, Eric T. ; Brennan, Sean N. ; Brown, Alexander ; O'Laughlin, Mitchell K. ; Bauer, Karin M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-79d31b788f6ad7c6d8ab6aa0c7bc39d183041255da0f5417a81bf17fa6383cd93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Criteria</topic><topic>Dynamic tests</topic><topic>Dynamics</topic><topic>Friction</topic><topic>Horizontal</topic><topic>Simulation</topic><topic>Transportation</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Torbic, Darren J.</creatorcontrib><creatorcontrib>Donnell, Eric T.</creatorcontrib><creatorcontrib>Brennan, Sean N.</creatorcontrib><creatorcontrib>Brown, Alexander</creatorcontrib><creatorcontrib>O'Laughlin, Mitchell K.</creatorcontrib><creatorcontrib>Bauer, Karin M.</creatorcontrib><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Safety Science and Risk</collection><jtitle>Transportation research record</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Torbic, Darren J.</au><au>Donnell, Eric T.</au><au>Brennan, Sean N.</au><au>Brown, Alexander</au><au>O'Laughlin, Mitchell K.</au><au>Bauer, Karin M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superelevation Design for Sharp Horizontal Curves on Steep Grades</atitle><jtitle>Transportation research record</jtitle><date>2014-01</date><risdate>2014</risdate><volume>2436</volume><issue>1</issue><spage>81</spage><epage>91</epage><pages>81-91</pages><issn>0361-1981</issn><eissn>2169-4052</eissn><abstract>The objective of this study was to develop superelevation criteria for sharp horizontal curves on steep grades. Field studies were undertaken and vehicle dynamics simulations (point mass, bicycle, and multibody) were performed to investigate combinations of horizontal curve and vertical grade design criteria. The vehicle dynamics simulations used AASHTO design criteria and field-measured data to investigate the safety margins against skidding and rollover for several vehicle types on sharp horizontal curves with steep grades. Research results indicated that for a simple horizontal curve, the maximum rate of super elevation should not exceed 12% on a downgrade. A spiral curve transition is recommended if the maximum superelevation rate is greater than 12%. On upgrades of 4% and greater, the maximum superelevation rate should be limited to 9% for minimum-radius curves under certain conditions. The superelevation attained at the point of curve entry should be checked and compared with a lateral friction margin condition so that the lateral friction margin on curve entry is not less than the margin within the curve. On multilane highways, the “Stay in Lane” sign should be installed in advance of sharp horizontal curves on steep downgrades.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><doi>10.3141/2436-09</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-1981 |
ispartof | Transportation research record, 2014-01, Vol.2436 (1), p.81-91 |
issn | 0361-1981 2169-4052 |
language | eng |
recordid | cdi_proquest_miscellaneous_1705069122 |
source | Access via SAGE |
subjects | Criteria Dynamic tests Dynamics Friction Horizontal Simulation Transportation Vehicles |
title | Superelevation Design for Sharp Horizontal Curves on Steep Grades |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T03%3A15%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superelevation%20Design%20for%20Sharp%20Horizontal%20Curves%20on%20Steep%20Grades&rft.jtitle=Transportation%20research%20record&rft.au=Torbic,%20Darren%20J.&rft.date=2014-01&rft.volume=2436&rft.issue=1&rft.spage=81&rft.epage=91&rft.pages=81-91&rft.issn=0361-1981&rft.eissn=2169-4052&rft_id=info:doi/10.3141/2436-09&rft_dat=%3Cproquest_cross%3E1705069122%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1669902421&rft_id=info:pmid/&rft_sage_id=10.3141_2436-09&rfr_iscdi=true |