Superelevation Design for Sharp Horizontal Curves on Steep Grades

The objective of this study was to develop superelevation criteria for sharp horizontal curves on steep grades. Field studies were undertaken and vehicle dynamics simulations (point mass, bicycle, and multibody) were performed to investigate combinations of horizontal curve and vertical grade design...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transportation research record 2014-01, Vol.2436 (1), p.81-91
Hauptverfasser: Torbic, Darren J., Donnell, Eric T., Brennan, Sean N., Brown, Alexander, O'Laughlin, Mitchell K., Bauer, Karin M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 91
container_issue 1
container_start_page 81
container_title Transportation research record
container_volume 2436
creator Torbic, Darren J.
Donnell, Eric T.
Brennan, Sean N.
Brown, Alexander
O'Laughlin, Mitchell K.
Bauer, Karin M.
description The objective of this study was to develop superelevation criteria for sharp horizontal curves on steep grades. Field studies were undertaken and vehicle dynamics simulations (point mass, bicycle, and multibody) were performed to investigate combinations of horizontal curve and vertical grade design criteria. The vehicle dynamics simulations used AASHTO design criteria and field-measured data to investigate the safety margins against skidding and rollover for several vehicle types on sharp horizontal curves with steep grades. Research results indicated that for a simple horizontal curve, the maximum rate of super elevation should not exceed 12% on a downgrade. A spiral curve transition is recommended if the maximum superelevation rate is greater than 12%. On upgrades of 4% and greater, the maximum superelevation rate should be limited to 9% for minimum-radius curves under certain conditions. The superelevation attained at the point of curve entry should be checked and compared with a lateral friction margin condition so that the lateral friction margin on curve entry is not less than the margin within the curve. On multilane highways, the “Stay in Lane” sign should be installed in advance of sharp horizontal curves on steep downgrades.
doi_str_mv 10.3141/2436-09
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1705069122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.3141_2436-09</sage_id><sourcerecordid>1705069122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-79d31b788f6ad7c6d8ab6aa0c7bc39d183041255da0f5417a81bf17fa6383cd93</originalsourceid><addsrcrecordid>eNqF0L1OwzAUBWALgUQpiFfIgARLwNd2_DNWBVqkSgyB2bpJnJIqjYOdVIKnp1XZGJjO8ulc3UPINdB7DgIemOAypeaETBhIkwqasVMyoVxCCkbDObmIcUMp50LxCZnlY--Ca90Oh8Z3yaOLzbpLah-S_ANDnyx9aL59N2CbzMewczHZq3xwrk8WASsXL8lZjW10V785Je_PT2_zZbp6XbzMZ6u05EIPqTIVh0JpXUusVCkrjYVEpKUqSm4q0JwKYFlWIa0zAQo1FDWoGiXXvKwMn5K7Y28f_Ofo4mC3TSxd22Ln_BgtKJpRaYCx_6mUxlAmGOzp7ZGWwccYXG370GwxfFmg9rCnPexp6eH-zVFGXDu78WPo9u_-YT_PAHE8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1669902421</pqid></control><display><type>article</type><title>Superelevation Design for Sharp Horizontal Curves on Steep Grades</title><source>Access via SAGE</source><creator>Torbic, Darren J. ; Donnell, Eric T. ; Brennan, Sean N. ; Brown, Alexander ; O'Laughlin, Mitchell K. ; Bauer, Karin M.</creator><creatorcontrib>Torbic, Darren J. ; Donnell, Eric T. ; Brennan, Sean N. ; Brown, Alexander ; O'Laughlin, Mitchell K. ; Bauer, Karin M.</creatorcontrib><description>The objective of this study was to develop superelevation criteria for sharp horizontal curves on steep grades. Field studies were undertaken and vehicle dynamics simulations (point mass, bicycle, and multibody) were performed to investigate combinations of horizontal curve and vertical grade design criteria. The vehicle dynamics simulations used AASHTO design criteria and field-measured data to investigate the safety margins against skidding and rollover for several vehicle types on sharp horizontal curves with steep grades. Research results indicated that for a simple horizontal curve, the maximum rate of super elevation should not exceed 12% on a downgrade. A spiral curve transition is recommended if the maximum superelevation rate is greater than 12%. On upgrades of 4% and greater, the maximum superelevation rate should be limited to 9% for minimum-radius curves under certain conditions. The superelevation attained at the point of curve entry should be checked and compared with a lateral friction margin condition so that the lateral friction margin on curve entry is not less than the margin within the curve. On multilane highways, the “Stay in Lane” sign should be installed in advance of sharp horizontal curves on steep downgrades.</description><identifier>ISSN: 0361-1981</identifier><identifier>EISSN: 2169-4052</identifier><identifier>DOI: 10.3141/2436-09</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Criteria ; Dynamic tests ; Dynamics ; Friction ; Horizontal ; Simulation ; Transportation ; Vehicles</subject><ispartof>Transportation research record, 2014-01, Vol.2436 (1), p.81-91</ispartof><rights>2014 National Academy of Sciences</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-79d31b788f6ad7c6d8ab6aa0c7bc39d183041255da0f5417a81bf17fa6383cd93</citedby><cites>FETCH-LOGICAL-c348t-79d31b788f6ad7c6d8ab6aa0c7bc39d183041255da0f5417a81bf17fa6383cd93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.3141/2436-09$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.3141/2436-09$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Torbic, Darren J.</creatorcontrib><creatorcontrib>Donnell, Eric T.</creatorcontrib><creatorcontrib>Brennan, Sean N.</creatorcontrib><creatorcontrib>Brown, Alexander</creatorcontrib><creatorcontrib>O'Laughlin, Mitchell K.</creatorcontrib><creatorcontrib>Bauer, Karin M.</creatorcontrib><title>Superelevation Design for Sharp Horizontal Curves on Steep Grades</title><title>Transportation research record</title><description>The objective of this study was to develop superelevation criteria for sharp horizontal curves on steep grades. Field studies were undertaken and vehicle dynamics simulations (point mass, bicycle, and multibody) were performed to investigate combinations of horizontal curve and vertical grade design criteria. The vehicle dynamics simulations used AASHTO design criteria and field-measured data to investigate the safety margins against skidding and rollover for several vehicle types on sharp horizontal curves with steep grades. Research results indicated that for a simple horizontal curve, the maximum rate of super elevation should not exceed 12% on a downgrade. A spiral curve transition is recommended if the maximum superelevation rate is greater than 12%. On upgrades of 4% and greater, the maximum superelevation rate should be limited to 9% for minimum-radius curves under certain conditions. The superelevation attained at the point of curve entry should be checked and compared with a lateral friction margin condition so that the lateral friction margin on curve entry is not less than the margin within the curve. On multilane highways, the “Stay in Lane” sign should be installed in advance of sharp horizontal curves on steep downgrades.</description><subject>Criteria</subject><subject>Dynamic tests</subject><subject>Dynamics</subject><subject>Friction</subject><subject>Horizontal</subject><subject>Simulation</subject><subject>Transportation</subject><subject>Vehicles</subject><issn>0361-1981</issn><issn>2169-4052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqF0L1OwzAUBWALgUQpiFfIgARLwNd2_DNWBVqkSgyB2bpJnJIqjYOdVIKnp1XZGJjO8ulc3UPINdB7DgIemOAypeaETBhIkwqasVMyoVxCCkbDObmIcUMp50LxCZnlY--Ca90Oh8Z3yaOLzbpLah-S_ANDnyx9aL59N2CbzMewczHZq3xwrk8WASsXL8lZjW10V785Je_PT2_zZbp6XbzMZ6u05EIPqTIVh0JpXUusVCkrjYVEpKUqSm4q0JwKYFlWIa0zAQo1FDWoGiXXvKwMn5K7Y28f_Ofo4mC3TSxd22Ln_BgtKJpRaYCx_6mUxlAmGOzp7ZGWwccYXG370GwxfFmg9rCnPexp6eH-zVFGXDu78WPo9u_-YT_PAHE8</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Torbic, Darren J.</creator><creator>Donnell, Eric T.</creator><creator>Brennan, Sean N.</creator><creator>Brown, Alexander</creator><creator>O'Laughlin, Mitchell K.</creator><creator>Bauer, Karin M.</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>7T2</scope><scope>7U2</scope></search><sort><creationdate>201401</creationdate><title>Superelevation Design for Sharp Horizontal Curves on Steep Grades</title><author>Torbic, Darren J. ; Donnell, Eric T. ; Brennan, Sean N. ; Brown, Alexander ; O'Laughlin, Mitchell K. ; Bauer, Karin M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-79d31b788f6ad7c6d8ab6aa0c7bc39d183041255da0f5417a81bf17fa6383cd93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Criteria</topic><topic>Dynamic tests</topic><topic>Dynamics</topic><topic>Friction</topic><topic>Horizontal</topic><topic>Simulation</topic><topic>Transportation</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Torbic, Darren J.</creatorcontrib><creatorcontrib>Donnell, Eric T.</creatorcontrib><creatorcontrib>Brennan, Sean N.</creatorcontrib><creatorcontrib>Brown, Alexander</creatorcontrib><creatorcontrib>O'Laughlin, Mitchell K.</creatorcontrib><creatorcontrib>Bauer, Karin M.</creatorcontrib><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Safety Science and Risk</collection><jtitle>Transportation research record</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Torbic, Darren J.</au><au>Donnell, Eric T.</au><au>Brennan, Sean N.</au><au>Brown, Alexander</au><au>O'Laughlin, Mitchell K.</au><au>Bauer, Karin M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superelevation Design for Sharp Horizontal Curves on Steep Grades</atitle><jtitle>Transportation research record</jtitle><date>2014-01</date><risdate>2014</risdate><volume>2436</volume><issue>1</issue><spage>81</spage><epage>91</epage><pages>81-91</pages><issn>0361-1981</issn><eissn>2169-4052</eissn><abstract>The objective of this study was to develop superelevation criteria for sharp horizontal curves on steep grades. Field studies were undertaken and vehicle dynamics simulations (point mass, bicycle, and multibody) were performed to investigate combinations of horizontal curve and vertical grade design criteria. The vehicle dynamics simulations used AASHTO design criteria and field-measured data to investigate the safety margins against skidding and rollover for several vehicle types on sharp horizontal curves with steep grades. Research results indicated that for a simple horizontal curve, the maximum rate of super elevation should not exceed 12% on a downgrade. A spiral curve transition is recommended if the maximum superelevation rate is greater than 12%. On upgrades of 4% and greater, the maximum superelevation rate should be limited to 9% for minimum-radius curves under certain conditions. The superelevation attained at the point of curve entry should be checked and compared with a lateral friction margin condition so that the lateral friction margin on curve entry is not less than the margin within the curve. On multilane highways, the “Stay in Lane” sign should be installed in advance of sharp horizontal curves on steep downgrades.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><doi>10.3141/2436-09</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-1981
ispartof Transportation research record, 2014-01, Vol.2436 (1), p.81-91
issn 0361-1981
2169-4052
language eng
recordid cdi_proquest_miscellaneous_1705069122
source Access via SAGE
subjects Criteria
Dynamic tests
Dynamics
Friction
Horizontal
Simulation
Transportation
Vehicles
title Superelevation Design for Sharp Horizontal Curves on Steep Grades
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T03%3A15%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superelevation%20Design%20for%20Sharp%20Horizontal%20Curves%20on%20Steep%20Grades&rft.jtitle=Transportation%20research%20record&rft.au=Torbic,%20Darren%20J.&rft.date=2014-01&rft.volume=2436&rft.issue=1&rft.spage=81&rft.epage=91&rft.pages=81-91&rft.issn=0361-1981&rft.eissn=2169-4052&rft_id=info:doi/10.3141/2436-09&rft_dat=%3Cproquest_cross%3E1705069122%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1669902421&rft_id=info:pmid/&rft_sage_id=10.3141_2436-09&rfr_iscdi=true