Planar cell polarity proteins differentially regulate extracellular matrix organization and assembly during zebrafish gastrulation
Zebrafish gastrulation cell movements occur in the context of dynamic changes in extracellular matrix (ECM) organization and require the concerted action of planar cell polarity (PCP) proteins that regulate cell elongation and mediolateral alignment. Data obtained using Xenopus laevis gastrulae have...
Gespeichert in:
Veröffentlicht in: | Developmental biology 2013-11, Vol.383 (1), p.39-51 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 51 |
---|---|
container_issue | 1 |
container_start_page | 39 |
container_title | Developmental biology |
container_volume | 383 |
creator | Dohn, Michael R. Mundell, Nathan A. Sawyer, Leah M. Dunlap, Julie A. Jessen, Jason R. |
description | Zebrafish gastrulation cell movements occur in the context of dynamic changes in extracellular matrix (ECM) organization and require the concerted action of planar cell polarity (PCP) proteins that regulate cell elongation and mediolateral alignment. Data obtained using Xenopus laevis gastrulae have shown that integrin–fibronectin interactions underlie the formation of polarized cell protrusions necessary for PCP and have implicated PCP proteins themselves as regulators of ECM. By contrast, the relationship between establishment of PCP and ECM assembly/remodeling during zebrafish gastrulation is unclear. We previously showed that zebrafish embryos carrying a null mutation in the four-pass transmembrane PCP protein vang-like 2 (vangl2) exhibit increased matrix metalloproteinase activity and decreased immunolabeling of fibronectin. These data implicated for the first time a core PCP protein in the regulation of pericellular proteolysis of ECM substrates and raised the question of whether other zebrafish PCP proteins also impact ECM organization. In Drosophila melanogaster, the cytoplasmic PCP protein Prickle binds Van Gogh and regulates its function. Here we report that similar to vangl2, loss of zebrafish prickle1a decreases fibronectin protein levels in gastrula embryos. We further show that Prickle1a physically binds Vangl2 and regulates both the subcellular distribution and total protein level of Vangl2. These data suggest that the ability of Prickle1a to impact fibronectin organization is at least partly due to effects on Vangl2. In contrast to loss of either Vangl2 or Prickle1a function, we find that glypican4 (a Wnt co-receptor) and frizzled7 mutant gastrula embryos with disrupted non-canonical Wnt signaling exhibit the opposite phenotype, namely increased fibronectin assembly. Our data show that glypican4 mutants do not have decreased proteolysis of ECM substrates, but instead have increased cell surface cadherin protein expression and increased intercellular adhesion. These data indicate that Wnt/Glypican4/Frizzled signaling regulates ECM assembly through effects on cadherin-mediated cell cohesion. Together, our results demonstrate that zebrafish Vangl2/Prickle1a and non-canonical Wnt/Frizzled signaling have opposing effects on ECM organization underlying PCP and gastrulation cell movements.
•Knockdown of Vangl2 and Prickle1a decreases ECM during zebrafish gastrulation.•Prickle1a binds and regulates expression of Vangl2.•Loss of the Wnt co-receptors |
doi_str_mv | 10.1016/j.ydbio.2013.08.027 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1705067727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012160613004697</els_id><sourcerecordid>1443998416</sourcerecordid><originalsourceid>FETCH-LOGICAL-c527t-b0b87133fb6e9dbea572a3004a5218d5023a483ac269ef5eb137af15923bb12e3</originalsourceid><addsrcrecordid>eNqFkU2L1TAUhoMoznX0FwiapZvWk6Qf6cKFDH7BgIIOuAsn7WnNpR_XJB3mztJfbjp3dKmrEHje9-TkYey5gFyAqF7v82Nn3ZJLECoHnYOsH7CdgKbMyqr4_pDtAITMRAXVGXsSwh4AlNbqMTuTBUhRaLljv76MOKPnLY0jPywjeheP_OCXSG4OvHN9T57m6HAcj9zTsI4YidNN9Lhl0tXzCaN3N3zxA87uFqNbZo5zxzEEmmzKdat388BvyXrsXfjBBwzRb1UJfcoe9TgGenZ_nrOr9---XXzMLj9_-HTx9jJrS1nHzILVtVCqtxU1nSUsa4kKoMBSCt2VIBUWWmErq4b6kqxQNfaibKSyVkhS5-zVqTdt93OlEM3kwrYDzrSswYgaSqjqWtb_R4tCNY0uRJVQdUJbv4TgqTcH7yb0RyPAbJ7M3tx5MpsnA9rA3YAX9wNWO1H3N_NHTAJenoAeF4ODd8FcfU0NVZKok0VIxJsTQenPrh15E1pHc0ud89RG0y3un0_4DQcqsbc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1443998416</pqid></control><display><type>article</type><title>Planar cell polarity proteins differentially regulate extracellular matrix organization and assembly during zebrafish gastrulation</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Dohn, Michael R. ; Mundell, Nathan A. ; Sawyer, Leah M. ; Dunlap, Julie A. ; Jessen, Jason R.</creator><creatorcontrib>Dohn, Michael R. ; Mundell, Nathan A. ; Sawyer, Leah M. ; Dunlap, Julie A. ; Jessen, Jason R.</creatorcontrib><description>Zebrafish gastrulation cell movements occur in the context of dynamic changes in extracellular matrix (ECM) organization and require the concerted action of planar cell polarity (PCP) proteins that regulate cell elongation and mediolateral alignment. Data obtained using Xenopus laevis gastrulae have shown that integrin–fibronectin interactions underlie the formation of polarized cell protrusions necessary for PCP and have implicated PCP proteins themselves as regulators of ECM. By contrast, the relationship between establishment of PCP and ECM assembly/remodeling during zebrafish gastrulation is unclear. We previously showed that zebrafish embryos carrying a null mutation in the four-pass transmembrane PCP protein vang-like 2 (vangl2) exhibit increased matrix metalloproteinase activity and decreased immunolabeling of fibronectin. These data implicated for the first time a core PCP protein in the regulation of pericellular proteolysis of ECM substrates and raised the question of whether other zebrafish PCP proteins also impact ECM organization. In Drosophila melanogaster, the cytoplasmic PCP protein Prickle binds Van Gogh and regulates its function. Here we report that similar to vangl2, loss of zebrafish prickle1a decreases fibronectin protein levels in gastrula embryos. We further show that Prickle1a physically binds Vangl2 and regulates both the subcellular distribution and total protein level of Vangl2. These data suggest that the ability of Prickle1a to impact fibronectin organization is at least partly due to effects on Vangl2. In contrast to loss of either Vangl2 or Prickle1a function, we find that glypican4 (a Wnt co-receptor) and frizzled7 mutant gastrula embryos with disrupted non-canonical Wnt signaling exhibit the opposite phenotype, namely increased fibronectin assembly. Our data show that glypican4 mutants do not have decreased proteolysis of ECM substrates, but instead have increased cell surface cadherin protein expression and increased intercellular adhesion. These data indicate that Wnt/Glypican4/Frizzled signaling regulates ECM assembly through effects on cadherin-mediated cell cohesion. Together, our results demonstrate that zebrafish Vangl2/Prickle1a and non-canonical Wnt/Frizzled signaling have opposing effects on ECM organization underlying PCP and gastrulation cell movements.
•Knockdown of Vangl2 and Prickle1a decreases ECM during zebrafish gastrulation.•Prickle1a binds and regulates expression of Vangl2.•Loss of the Wnt co-receptors glypican4 or frizzled7 increases ECM assembly.•Glypican4 regulates ECM assembly through cadherin-mediated cell adhesion.</description><identifier>ISSN: 0012-1606</identifier><identifier>EISSN: 1095-564X</identifier><identifier>DOI: 10.1016/j.ydbio.2013.08.027</identifier><identifier>PMID: 24021482</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adaptor Proteins, Signal Transducing - genetics ; Adaptor Proteins, Signal Transducing - metabolism ; adhesion ; Animals ; Blotting, Western ; Cadherins ; cell growth ; cell polarity ; Cell Polarity - physiology ; cohesion ; Danio rerio ; Drosophila melanogaster ; extracellular matrix ; Extracellular Matrix - physiology ; Fibronectin ; fibronectins ; Gastrulation ; Gastrulation - physiology ; Gene Knockdown Techniques ; Glypicans - metabolism ; Immunoprecipitation ; LIM Domain Proteins - genetics ; LIM Domain Proteins - metabolism ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Metalloproteinases ; Microscopy, Confocal ; Microscopy, Electron, Transmission ; mutants ; mutation ; phenotype ; Polarity ; protein content ; protein synthesis ; proteolysis ; Receptors, Cell Surface - metabolism ; Wnt Signaling Pathway - physiology ; Xenopus laevis ; Zebrafish ; Zebrafish - embryology ; Zebrafish Proteins - genetics ; Zebrafish Proteins - metabolism</subject><ispartof>Developmental biology, 2013-11, Vol.383 (1), p.39-51</ispartof><rights>2013 Elsevier Inc.</rights><rights>2013 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c527t-b0b87133fb6e9dbea572a3004a5218d5023a483ac269ef5eb137af15923bb12e3</citedby><cites>FETCH-LOGICAL-c527t-b0b87133fb6e9dbea572a3004a5218d5023a483ac269ef5eb137af15923bb12e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ydbio.2013.08.027$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24021482$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dohn, Michael R.</creatorcontrib><creatorcontrib>Mundell, Nathan A.</creatorcontrib><creatorcontrib>Sawyer, Leah M.</creatorcontrib><creatorcontrib>Dunlap, Julie A.</creatorcontrib><creatorcontrib>Jessen, Jason R.</creatorcontrib><title>Planar cell polarity proteins differentially regulate extracellular matrix organization and assembly during zebrafish gastrulation</title><title>Developmental biology</title><addtitle>Dev Biol</addtitle><description>Zebrafish gastrulation cell movements occur in the context of dynamic changes in extracellular matrix (ECM) organization and require the concerted action of planar cell polarity (PCP) proteins that regulate cell elongation and mediolateral alignment. Data obtained using Xenopus laevis gastrulae have shown that integrin–fibronectin interactions underlie the formation of polarized cell protrusions necessary for PCP and have implicated PCP proteins themselves as regulators of ECM. By contrast, the relationship between establishment of PCP and ECM assembly/remodeling during zebrafish gastrulation is unclear. We previously showed that zebrafish embryos carrying a null mutation in the four-pass transmembrane PCP protein vang-like 2 (vangl2) exhibit increased matrix metalloproteinase activity and decreased immunolabeling of fibronectin. These data implicated for the first time a core PCP protein in the regulation of pericellular proteolysis of ECM substrates and raised the question of whether other zebrafish PCP proteins also impact ECM organization. In Drosophila melanogaster, the cytoplasmic PCP protein Prickle binds Van Gogh and regulates its function. Here we report that similar to vangl2, loss of zebrafish prickle1a decreases fibronectin protein levels in gastrula embryos. We further show that Prickle1a physically binds Vangl2 and regulates both the subcellular distribution and total protein level of Vangl2. These data suggest that the ability of Prickle1a to impact fibronectin organization is at least partly due to effects on Vangl2. In contrast to loss of either Vangl2 or Prickle1a function, we find that glypican4 (a Wnt co-receptor) and frizzled7 mutant gastrula embryos with disrupted non-canonical Wnt signaling exhibit the opposite phenotype, namely increased fibronectin assembly. Our data show that glypican4 mutants do not have decreased proteolysis of ECM substrates, but instead have increased cell surface cadherin protein expression and increased intercellular adhesion. These data indicate that Wnt/Glypican4/Frizzled signaling regulates ECM assembly through effects on cadherin-mediated cell cohesion. Together, our results demonstrate that zebrafish Vangl2/Prickle1a and non-canonical Wnt/Frizzled signaling have opposing effects on ECM organization underlying PCP and gastrulation cell movements.
•Knockdown of Vangl2 and Prickle1a decreases ECM during zebrafish gastrulation.•Prickle1a binds and regulates expression of Vangl2.•Loss of the Wnt co-receptors glypican4 or frizzled7 increases ECM assembly.•Glypican4 regulates ECM assembly through cadherin-mediated cell adhesion.</description><subject>Adaptor Proteins, Signal Transducing - genetics</subject><subject>Adaptor Proteins, Signal Transducing - metabolism</subject><subject>adhesion</subject><subject>Animals</subject><subject>Blotting, Western</subject><subject>Cadherins</subject><subject>cell growth</subject><subject>cell polarity</subject><subject>Cell Polarity - physiology</subject><subject>cohesion</subject><subject>Danio rerio</subject><subject>Drosophila melanogaster</subject><subject>extracellular matrix</subject><subject>Extracellular Matrix - physiology</subject><subject>Fibronectin</subject><subject>fibronectins</subject><subject>Gastrulation</subject><subject>Gastrulation - physiology</subject><subject>Gene Knockdown Techniques</subject><subject>Glypicans - metabolism</subject><subject>Immunoprecipitation</subject><subject>LIM Domain Proteins - genetics</subject><subject>LIM Domain Proteins - metabolism</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Metalloproteinases</subject><subject>Microscopy, Confocal</subject><subject>Microscopy, Electron, Transmission</subject><subject>mutants</subject><subject>mutation</subject><subject>phenotype</subject><subject>Polarity</subject><subject>protein content</subject><subject>protein synthesis</subject><subject>proteolysis</subject><subject>Receptors, Cell Surface - metabolism</subject><subject>Wnt Signaling Pathway - physiology</subject><subject>Xenopus laevis</subject><subject>Zebrafish</subject><subject>Zebrafish - embryology</subject><subject>Zebrafish Proteins - genetics</subject><subject>Zebrafish Proteins - metabolism</subject><issn>0012-1606</issn><issn>1095-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU2L1TAUhoMoznX0FwiapZvWk6Qf6cKFDH7BgIIOuAsn7WnNpR_XJB3mztJfbjp3dKmrEHje9-TkYey5gFyAqF7v82Nn3ZJLECoHnYOsH7CdgKbMyqr4_pDtAITMRAXVGXsSwh4AlNbqMTuTBUhRaLljv76MOKPnLY0jPywjeheP_OCXSG4OvHN9T57m6HAcj9zTsI4YidNN9Lhl0tXzCaN3N3zxA87uFqNbZo5zxzEEmmzKdat388BvyXrsXfjBBwzRb1UJfcoe9TgGenZ_nrOr9---XXzMLj9_-HTx9jJrS1nHzILVtVCqtxU1nSUsa4kKoMBSCt2VIBUWWmErq4b6kqxQNfaibKSyVkhS5-zVqTdt93OlEM3kwrYDzrSswYgaSqjqWtb_R4tCNY0uRJVQdUJbv4TgqTcH7yb0RyPAbJ7M3tx5MpsnA9rA3YAX9wNWO1H3N_NHTAJenoAeF4ODd8FcfU0NVZKok0VIxJsTQenPrh15E1pHc0ud89RG0y3un0_4DQcqsbc</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Dohn, Michael R.</creator><creator>Mundell, Nathan A.</creator><creator>Sawyer, Leah M.</creator><creator>Dunlap, Julie A.</creator><creator>Jessen, Jason R.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope></search><sort><creationdate>20131101</creationdate><title>Planar cell polarity proteins differentially regulate extracellular matrix organization and assembly during zebrafish gastrulation</title><author>Dohn, Michael R. ; Mundell, Nathan A. ; Sawyer, Leah M. ; Dunlap, Julie A. ; Jessen, Jason R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c527t-b0b87133fb6e9dbea572a3004a5218d5023a483ac269ef5eb137af15923bb12e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adaptor Proteins, Signal Transducing - genetics</topic><topic>Adaptor Proteins, Signal Transducing - metabolism</topic><topic>adhesion</topic><topic>Animals</topic><topic>Blotting, Western</topic><topic>Cadherins</topic><topic>cell growth</topic><topic>cell polarity</topic><topic>Cell Polarity - physiology</topic><topic>cohesion</topic><topic>Danio rerio</topic><topic>Drosophila melanogaster</topic><topic>extracellular matrix</topic><topic>Extracellular Matrix - physiology</topic><topic>Fibronectin</topic><topic>fibronectins</topic><topic>Gastrulation</topic><topic>Gastrulation - physiology</topic><topic>Gene Knockdown Techniques</topic><topic>Glypicans - metabolism</topic><topic>Immunoprecipitation</topic><topic>LIM Domain Proteins - genetics</topic><topic>LIM Domain Proteins - metabolism</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Metalloproteinases</topic><topic>Microscopy, Confocal</topic><topic>Microscopy, Electron, Transmission</topic><topic>mutants</topic><topic>mutation</topic><topic>phenotype</topic><topic>Polarity</topic><topic>protein content</topic><topic>protein synthesis</topic><topic>proteolysis</topic><topic>Receptors, Cell Surface - metabolism</topic><topic>Wnt Signaling Pathway - physiology</topic><topic>Xenopus laevis</topic><topic>Zebrafish</topic><topic>Zebrafish - embryology</topic><topic>Zebrafish Proteins - genetics</topic><topic>Zebrafish Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dohn, Michael R.</creatorcontrib><creatorcontrib>Mundell, Nathan A.</creatorcontrib><creatorcontrib>Sawyer, Leah M.</creatorcontrib><creatorcontrib>Dunlap, Julie A.</creatorcontrib><creatorcontrib>Jessen, Jason R.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Developmental biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dohn, Michael R.</au><au>Mundell, Nathan A.</au><au>Sawyer, Leah M.</au><au>Dunlap, Julie A.</au><au>Jessen, Jason R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Planar cell polarity proteins differentially regulate extracellular matrix organization and assembly during zebrafish gastrulation</atitle><jtitle>Developmental biology</jtitle><addtitle>Dev Biol</addtitle><date>2013-11-01</date><risdate>2013</risdate><volume>383</volume><issue>1</issue><spage>39</spage><epage>51</epage><pages>39-51</pages><issn>0012-1606</issn><eissn>1095-564X</eissn><abstract>Zebrafish gastrulation cell movements occur in the context of dynamic changes in extracellular matrix (ECM) organization and require the concerted action of planar cell polarity (PCP) proteins that regulate cell elongation and mediolateral alignment. Data obtained using Xenopus laevis gastrulae have shown that integrin–fibronectin interactions underlie the formation of polarized cell protrusions necessary for PCP and have implicated PCP proteins themselves as regulators of ECM. By contrast, the relationship between establishment of PCP and ECM assembly/remodeling during zebrafish gastrulation is unclear. We previously showed that zebrafish embryos carrying a null mutation in the four-pass transmembrane PCP protein vang-like 2 (vangl2) exhibit increased matrix metalloproteinase activity and decreased immunolabeling of fibronectin. These data implicated for the first time a core PCP protein in the regulation of pericellular proteolysis of ECM substrates and raised the question of whether other zebrafish PCP proteins also impact ECM organization. In Drosophila melanogaster, the cytoplasmic PCP protein Prickle binds Van Gogh and regulates its function. Here we report that similar to vangl2, loss of zebrafish prickle1a decreases fibronectin protein levels in gastrula embryos. We further show that Prickle1a physically binds Vangl2 and regulates both the subcellular distribution and total protein level of Vangl2. These data suggest that the ability of Prickle1a to impact fibronectin organization is at least partly due to effects on Vangl2. In contrast to loss of either Vangl2 or Prickle1a function, we find that glypican4 (a Wnt co-receptor) and frizzled7 mutant gastrula embryos with disrupted non-canonical Wnt signaling exhibit the opposite phenotype, namely increased fibronectin assembly. Our data show that glypican4 mutants do not have decreased proteolysis of ECM substrates, but instead have increased cell surface cadherin protein expression and increased intercellular adhesion. These data indicate that Wnt/Glypican4/Frizzled signaling regulates ECM assembly through effects on cadherin-mediated cell cohesion. Together, our results demonstrate that zebrafish Vangl2/Prickle1a and non-canonical Wnt/Frizzled signaling have opposing effects on ECM organization underlying PCP and gastrulation cell movements.
•Knockdown of Vangl2 and Prickle1a decreases ECM during zebrafish gastrulation.•Prickle1a binds and regulates expression of Vangl2.•Loss of the Wnt co-receptors glypican4 or frizzled7 increases ECM assembly.•Glypican4 regulates ECM assembly through cadherin-mediated cell adhesion.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>24021482</pmid><doi>10.1016/j.ydbio.2013.08.027</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-1606 |
ispartof | Developmental biology, 2013-11, Vol.383 (1), p.39-51 |
issn | 0012-1606 1095-564X |
language | eng |
recordid | cdi_proquest_miscellaneous_1705067727 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals |
subjects | Adaptor Proteins, Signal Transducing - genetics Adaptor Proteins, Signal Transducing - metabolism adhesion Animals Blotting, Western Cadherins cell growth cell polarity Cell Polarity - physiology cohesion Danio rerio Drosophila melanogaster extracellular matrix Extracellular Matrix - physiology Fibronectin fibronectins Gastrulation Gastrulation - physiology Gene Knockdown Techniques Glypicans - metabolism Immunoprecipitation LIM Domain Proteins - genetics LIM Domain Proteins - metabolism Membrane Proteins - genetics Membrane Proteins - metabolism Metalloproteinases Microscopy, Confocal Microscopy, Electron, Transmission mutants mutation phenotype Polarity protein content protein synthesis proteolysis Receptors, Cell Surface - metabolism Wnt Signaling Pathway - physiology Xenopus laevis Zebrafish Zebrafish - embryology Zebrafish Proteins - genetics Zebrafish Proteins - metabolism |
title | Planar cell polarity proteins differentially regulate extracellular matrix organization and assembly during zebrafish gastrulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T06%3A33%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Planar%20cell%20polarity%20proteins%20differentially%20regulate%20extracellular%20matrix%20organization%20and%20assembly%20during%20zebrafish%20gastrulation&rft.jtitle=Developmental%20biology&rft.au=Dohn,%20Michael%20R.&rft.date=2013-11-01&rft.volume=383&rft.issue=1&rft.spage=39&rft.epage=51&rft.pages=39-51&rft.issn=0012-1606&rft.eissn=1095-564X&rft_id=info:doi/10.1016/j.ydbio.2013.08.027&rft_dat=%3Cproquest_cross%3E1443998416%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1443998416&rft_id=info:pmid/24021482&rft_els_id=S0012160613004697&rfr_iscdi=true |