Optimal Wind Turbines Micrositing in Onshore Wind Farms Using Fuzzy Genetic Algorithm

With the fast growth in the number and size of installed wind farms (WFs) around the world, optimal wind turbines (WTs) micrositing has become a challenge from both technological and mathematical points of view. An appropriate layout of wind turbines is crucial to obtain adequate performance with re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2015-01, Vol.2015 (2015), p.1-9
Hauptverfasser: Zhang, Huaguang, Sun, Qiuye, Zhang, Rui, Yang, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 2015
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2015
creator Zhang, Huaguang
Sun, Qiuye
Zhang, Rui
Yang, Jun
description With the fast growth in the number and size of installed wind farms (WFs) around the world, optimal wind turbines (WTs) micrositing has become a challenge from both technological and mathematical points of view. An appropriate layout of wind turbines is crucial to obtain adequate performance with respect to the development and operation of the wind power plant during its life span. This work presents a fuzzy genetic algorithm (FGA) for maximizing the economic profitability of the project. The algorithm considers a new WF model including several important factors to the design of the layout. The model consists of wake loss, terrain effect, and economic benefits, which can be calculated by locations of wind turbines. The results demonstrate that the algorithm performs better than genetic algorithm, in terms of maximum values of net annual value of wind power plants and computational burden.
doi_str_mv 10.1155/2015/324203
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1705064509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1705064509</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-2b405486c04b3742e00dbc3214bd740edb83118f6e8dfb41eb44f0c31ec3d0013</originalsourceid><addsrcrecordid>eNqF0U1Lw0AQBuAgCtbqybsEvIgSO7Mf2fRYiq1CpZcWvYV8bNotyabuJkj7690QD-Klpx3Yh4F5X8-7RXhG5HxEAPmIEkaAnnkD5CENODJx7mYgLEBCPy-9K2t3AAQ5RgNvvdw3qkpK_0Pp3F-1JlVaWv9dZaa2qlF64yvtL7Xd1kb2aJaYyvpr2_3N2uPx4M-llo3K_Em5qY1qttW1d1EkpZU3v-_QW89eVtPXYLGcv00niyBjhDQBSRlwFoUZsJQKRiRAnmaUIEtzwUDmaUQRoyKUUV6kDGXKWAEZRZnRHADp0Hvo9-5N_dVK28SVspksy0TLurUxCuAQMg7j0zSMuBBEjENH7__RXd0a7Q5xKqRsLEKgTj31qkvKGlnEe-OSNIcYIe7aiLs24r4Npx97vXURJt_qBL7rsXREFskfLCgnlP4AqLaRCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1663497603</pqid></control><display><type>article</type><title>Optimal Wind Turbines Micrositing in Onshore Wind Farms Using Fuzzy Genetic Algorithm</title><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Zhang, Huaguang ; Sun, Qiuye ; Zhang, Rui ; Yang, Jun</creator><contributor>Sreeram, Victor</contributor><creatorcontrib>Zhang, Huaguang ; Sun, Qiuye ; Zhang, Rui ; Yang, Jun ; Sreeram, Victor</creatorcontrib><description>With the fast growth in the number and size of installed wind farms (WFs) around the world, optimal wind turbines (WTs) micrositing has become a challenge from both technological and mathematical points of view. An appropriate layout of wind turbines is crucial to obtain adequate performance with respect to the development and operation of the wind power plant during its life span. This work presents a fuzzy genetic algorithm (FGA) for maximizing the economic profitability of the project. The algorithm considers a new WF model including several important factors to the design of the layout. The model consists of wake loss, terrain effect, and economic benefits, which can be calculated by locations of wind turbines. The results demonstrate that the algorithm performs better than genetic algorithm, in terms of maximum values of net annual value of wind power plants and computational burden.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2015/324203</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Alternative energy sources ; Design factors ; Economics ; Fuzzy ; Fuzzy logic ; Fuzzy set theory ; Genetic algorithms ; Mathematical models ; Methods ; Monte Carlo simulation ; Mutation ; Optimization ; Optimization algorithms ; Plant layout ; Power plants ; Studies ; Turbines ; Wind effects ; Wind farms ; Wind power ; Wind turbines</subject><ispartof>Mathematical problems in engineering, 2015-01, Vol.2015 (2015), p.1-9</ispartof><rights>Copyright © 2015 Jun Yang et al.</rights><rights>Copyright © 2015 Jun Yang et al. Jun Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-2b405486c04b3742e00dbc3214bd740edb83118f6e8dfb41eb44f0c31ec3d0013</citedby><cites>FETCH-LOGICAL-c422t-2b405486c04b3742e00dbc3214bd740edb83118f6e8dfb41eb44f0c31ec3d0013</cites><orcidid>0000-0002-1303-1370 ; 0000-0003-0599-1416 ; 0000-0001-8801-0884</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Sreeram, Victor</contributor><creatorcontrib>Zhang, Huaguang</creatorcontrib><creatorcontrib>Sun, Qiuye</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><creatorcontrib>Yang, Jun</creatorcontrib><title>Optimal Wind Turbines Micrositing in Onshore Wind Farms Using Fuzzy Genetic Algorithm</title><title>Mathematical problems in engineering</title><description>With the fast growth in the number and size of installed wind farms (WFs) around the world, optimal wind turbines (WTs) micrositing has become a challenge from both technological and mathematical points of view. An appropriate layout of wind turbines is crucial to obtain adequate performance with respect to the development and operation of the wind power plant during its life span. This work presents a fuzzy genetic algorithm (FGA) for maximizing the economic profitability of the project. The algorithm considers a new WF model including several important factors to the design of the layout. The model consists of wake loss, terrain effect, and economic benefits, which can be calculated by locations of wind turbines. The results demonstrate that the algorithm performs better than genetic algorithm, in terms of maximum values of net annual value of wind power plants and computational burden.</description><subject>Alternative energy sources</subject><subject>Design factors</subject><subject>Economics</subject><subject>Fuzzy</subject><subject>Fuzzy logic</subject><subject>Fuzzy set theory</subject><subject>Genetic algorithms</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Monte Carlo simulation</subject><subject>Mutation</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Plant layout</subject><subject>Power plants</subject><subject>Studies</subject><subject>Turbines</subject><subject>Wind effects</subject><subject>Wind farms</subject><subject>Wind power</subject><subject>Wind turbines</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNqF0U1Lw0AQBuAgCtbqybsEvIgSO7Mf2fRYiq1CpZcWvYV8bNotyabuJkj7690QD-Klpx3Yh4F5X8-7RXhG5HxEAPmIEkaAnnkD5CENODJx7mYgLEBCPy-9K2t3AAQ5RgNvvdw3qkpK_0Pp3F-1JlVaWv9dZaa2qlF64yvtL7Xd1kb2aJaYyvpr2_3N2uPx4M-llo3K_Em5qY1qttW1d1EkpZU3v-_QW89eVtPXYLGcv00niyBjhDQBSRlwFoUZsJQKRiRAnmaUIEtzwUDmaUQRoyKUUV6kDGXKWAEZRZnRHADp0Hvo9-5N_dVK28SVspksy0TLurUxCuAQMg7j0zSMuBBEjENH7__RXd0a7Q5xKqRsLEKgTj31qkvKGlnEe-OSNIcYIe7aiLs24r4Npx97vXURJt_qBL7rsXREFskfLCgnlP4AqLaRCQ</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Zhang, Huaguang</creator><creator>Sun, Qiuye</creator><creator>Zhang, Rui</creator><creator>Yang, Jun</creator><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SC</scope><scope>7SU</scope><scope>C1K</scope><scope>H8D</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7ST</scope><scope>7U6</scope><orcidid>https://orcid.org/0000-0002-1303-1370</orcidid><orcidid>https://orcid.org/0000-0003-0599-1416</orcidid><orcidid>https://orcid.org/0000-0001-8801-0884</orcidid></search><sort><creationdate>20150101</creationdate><title>Optimal Wind Turbines Micrositing in Onshore Wind Farms Using Fuzzy Genetic Algorithm</title><author>Zhang, Huaguang ; Sun, Qiuye ; Zhang, Rui ; Yang, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-2b405486c04b3742e00dbc3214bd740edb83118f6e8dfb41eb44f0c31ec3d0013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Alternative energy sources</topic><topic>Design factors</topic><topic>Economics</topic><topic>Fuzzy</topic><topic>Fuzzy logic</topic><topic>Fuzzy set theory</topic><topic>Genetic algorithms</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Monte Carlo simulation</topic><topic>Mutation</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Plant layout</topic><topic>Power plants</topic><topic>Studies</topic><topic>Turbines</topic><topic>Wind effects</topic><topic>Wind farms</topic><topic>Wind power</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Huaguang</creatorcontrib><creatorcontrib>Sun, Qiuye</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><creatorcontrib>Yang, Jun</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Huaguang</au><au>Sun, Qiuye</au><au>Zhang, Rui</au><au>Yang, Jun</au><au>Sreeram, Victor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Wind Turbines Micrositing in Onshore Wind Farms Using Fuzzy Genetic Algorithm</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>2015</volume><issue>2015</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>With the fast growth in the number and size of installed wind farms (WFs) around the world, optimal wind turbines (WTs) micrositing has become a challenge from both technological and mathematical points of view. An appropriate layout of wind turbines is crucial to obtain adequate performance with respect to the development and operation of the wind power plant during its life span. This work presents a fuzzy genetic algorithm (FGA) for maximizing the economic profitability of the project. The algorithm considers a new WF model including several important factors to the design of the layout. The model consists of wake loss, terrain effect, and economic benefits, which can be calculated by locations of wind turbines. The results demonstrate that the algorithm performs better than genetic algorithm, in terms of maximum values of net annual value of wind power plants and computational burden.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2015/324203</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1303-1370</orcidid><orcidid>https://orcid.org/0000-0003-0599-1416</orcidid><orcidid>https://orcid.org/0000-0001-8801-0884</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2015-01, Vol.2015 (2015), p.1-9
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_miscellaneous_1705064509
source Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Alternative energy sources
Design factors
Economics
Fuzzy
Fuzzy logic
Fuzzy set theory
Genetic algorithms
Mathematical models
Methods
Monte Carlo simulation
Mutation
Optimization
Optimization algorithms
Plant layout
Power plants
Studies
Turbines
Wind effects
Wind farms
Wind power
Wind turbines
title Optimal Wind Turbines Micrositing in Onshore Wind Farms Using Fuzzy Genetic Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T06%3A13%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Wind%20Turbines%20Micrositing%20in%20Onshore%20Wind%20Farms%20Using%20Fuzzy%20Genetic%20Algorithm&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Zhang,%20Huaguang&rft.date=2015-01-01&rft.volume=2015&rft.issue=2015&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2015/324203&rft_dat=%3Cproquest_cross%3E1705064509%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1663497603&rft_id=info:pmid/&rfr_iscdi=true