Performance Comparison of Liquid–Liquid Extraction in Parallel Microflows

Parallel bicontinuous flows, which include stratified and core-annular flow, have applications in liquid–liquid extraction in microchannels. The flow regime has a significant impact on interphase mass transfer. Either stratified flow or core-annular flow can result in better extraction, depending on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2014-05, Vol.53 (19), p.8171-8181
Hauptverfasser: Vir, Anil B, Fabiyan, A. S, Picardo, J. R, Pushpavanam, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8181
container_issue 19
container_start_page 8171
container_title Industrial & engineering chemistry research
container_volume 53
creator Vir, Anil B
Fabiyan, A. S
Picardo, J. R
Pushpavanam, S
description Parallel bicontinuous flows, which include stratified and core-annular flow, have applications in liquid–liquid extraction in microchannels. The flow regime has a significant impact on interphase mass transfer. Either stratified flow or core-annular flow can result in better extraction, depending on the physical properties of the fluids and solute and the operating conditions. In this work, we systematically compare the extraction performance of core-annular and stratified flow. Mathematical models are developed for each flow regime and solved semianalytically. Both models are validated with experimental data from the literature. Using the models we analyze both flow regimes across the parameter space. Two basis for comparison are used: (i) specified flow rates of the two fluid streams and (ii) specified pressure gradient and holdup (volume fraction of the carrier stream). For core-annular flow, two distinct cases are analyzed based on the position of the solute bearing carrier stream: (i) the carrier stream is the core fluid and the solvent stream is the annular fluid and (ii) the carrier stream is the annular fluid. The results are explained in terms of two key factors: the interfacial area and the ratio of diffusion time to residence time in each fluid. This new understanding is coalesced into a set of guidelines for selecting the parallel flow regime which enhances extraction performance.
doi_str_mv 10.1021/ie4041803
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1705060537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1701080011</sourcerecordid><originalsourceid>FETCH-LOGICAL-a362t-c5dd23057094216adad25415d35af49876391501bdb3764ee8e9f777980364fb3</originalsourceid><addsrcrecordid>eNqN0MFKxDAQBuAgCq6rB9-gF0EP1UmTadKjLLsqrrgHPYdsm0CWttlNWtSb7-Ab-iRWKp48eJqB-Rj4f0JOKVxSyOiVMxw4lcD2yIRiBikCx30yASllilLiITmKcQMAiJxPyP3KBOtDo9vSJDPfbHVw0beJt8nS7XpXfb5_jEsyf-2CLjs3XF2brHTQdW3q5MGVwdvav8RjcmB1Hc3Jz5yS58X8aXabLh9v7mbXy1SzPOvSEqsqY4ACCp7RXFe6ypBTrBhqywspclZQBLqu1kzk3BhpCiuEKIZUObdrNiXn499t8LvexE41LpamrnVrfB8VFYCQAzLxH0pBAlA60IuRDnFiDMaqbXCNDm-KgvruVv12O9iz0eoyqo3vQzvk_cN9AYW5dr8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1701080011</pqid></control><display><type>article</type><title>Performance Comparison of Liquid–Liquid Extraction in Parallel Microflows</title><source>ACS Publications</source><creator>Vir, Anil B ; Fabiyan, A. S ; Picardo, J. R ; Pushpavanam, S</creator><creatorcontrib>Vir, Anil B ; Fabiyan, A. S ; Picardo, J. R ; Pushpavanam, S</creatorcontrib><description>Parallel bicontinuous flows, which include stratified and core-annular flow, have applications in liquid–liquid extraction in microchannels. The flow regime has a significant impact on interphase mass transfer. Either stratified flow or core-annular flow can result in better extraction, depending on the physical properties of the fluids and solute and the operating conditions. In this work, we systematically compare the extraction performance of core-annular and stratified flow. Mathematical models are developed for each flow regime and solved semianalytically. Both models are validated with experimental data from the literature. Using the models we analyze both flow regimes across the parameter space. Two basis for comparison are used: (i) specified flow rates of the two fluid streams and (ii) specified pressure gradient and holdup (volume fraction of the carrier stream). For core-annular flow, two distinct cases are analyzed based on the position of the solute bearing carrier stream: (i) the carrier stream is the core fluid and the solvent stream is the annular fluid and (ii) the carrier stream is the annular fluid. The results are explained in terms of two key factors: the interfacial area and the ratio of diffusion time to residence time in each fluid. This new understanding is coalesced into a set of guidelines for selecting the parallel flow regime which enhances extraction performance.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/ie4041803</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Annular ; Carriers ; Computational fluid dynamics ; Fluid flow ; Fluids ; Liquid-liquid extraction ; Mathematical models ; Stratified flow ; Streams</subject><ispartof>Industrial &amp; engineering chemistry research, 2014-05, Vol.53 (19), p.8171-8181</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a362t-c5dd23057094216adad25415d35af49876391501bdb3764ee8e9f777980364fb3</citedby><cites>FETCH-LOGICAL-a362t-c5dd23057094216adad25415d35af49876391501bdb3764ee8e9f777980364fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ie4041803$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ie4041803$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Vir, Anil B</creatorcontrib><creatorcontrib>Fabiyan, A. S</creatorcontrib><creatorcontrib>Picardo, J. R</creatorcontrib><creatorcontrib>Pushpavanam, S</creatorcontrib><title>Performance Comparison of Liquid–Liquid Extraction in Parallel Microflows</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>Parallel bicontinuous flows, which include stratified and core-annular flow, have applications in liquid–liquid extraction in microchannels. The flow regime has a significant impact on interphase mass transfer. Either stratified flow or core-annular flow can result in better extraction, depending on the physical properties of the fluids and solute and the operating conditions. In this work, we systematically compare the extraction performance of core-annular and stratified flow. Mathematical models are developed for each flow regime and solved semianalytically. Both models are validated with experimental data from the literature. Using the models we analyze both flow regimes across the parameter space. Two basis for comparison are used: (i) specified flow rates of the two fluid streams and (ii) specified pressure gradient and holdup (volume fraction of the carrier stream). For core-annular flow, two distinct cases are analyzed based on the position of the solute bearing carrier stream: (i) the carrier stream is the core fluid and the solvent stream is the annular fluid and (ii) the carrier stream is the annular fluid. The results are explained in terms of two key factors: the interfacial area and the ratio of diffusion time to residence time in each fluid. This new understanding is coalesced into a set of guidelines for selecting the parallel flow regime which enhances extraction performance.</description><subject>Annular</subject><subject>Carriers</subject><subject>Computational fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Liquid-liquid extraction</subject><subject>Mathematical models</subject><subject>Stratified flow</subject><subject>Streams</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqN0MFKxDAQBuAgCq6rB9-gF0EP1UmTadKjLLsqrrgHPYdsm0CWttlNWtSb7-Ab-iRWKp48eJqB-Rj4f0JOKVxSyOiVMxw4lcD2yIRiBikCx30yASllilLiITmKcQMAiJxPyP3KBOtDo9vSJDPfbHVw0beJt8nS7XpXfb5_jEsyf-2CLjs3XF2brHTQdW3q5MGVwdvav8RjcmB1Hc3Jz5yS58X8aXabLh9v7mbXy1SzPOvSEqsqY4ACCp7RXFe6ypBTrBhqywspclZQBLqu1kzk3BhpCiuEKIZUObdrNiXn499t8LvexE41LpamrnVrfB8VFYCQAzLxH0pBAlA60IuRDnFiDMaqbXCNDm-KgvruVv12O9iz0eoyqo3vQzvk_cN9AYW5dr8</recordid><startdate>20140514</startdate><enddate>20140514</enddate><creator>Vir, Anil B</creator><creator>Fabiyan, A. S</creator><creator>Picardo, J. R</creator><creator>Pushpavanam, S</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20140514</creationdate><title>Performance Comparison of Liquid–Liquid Extraction in Parallel Microflows</title><author>Vir, Anil B ; Fabiyan, A. S ; Picardo, J. R ; Pushpavanam, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a362t-c5dd23057094216adad25415d35af49876391501bdb3764ee8e9f777980364fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Annular</topic><topic>Carriers</topic><topic>Computational fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Liquid-liquid extraction</topic><topic>Mathematical models</topic><topic>Stratified flow</topic><topic>Streams</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vir, Anil B</creatorcontrib><creatorcontrib>Fabiyan, A. S</creatorcontrib><creatorcontrib>Picardo, J. R</creatorcontrib><creatorcontrib>Pushpavanam, S</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vir, Anil B</au><au>Fabiyan, A. S</au><au>Picardo, J. R</au><au>Pushpavanam, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Comparison of Liquid–Liquid Extraction in Parallel Microflows</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2014-05-14</date><risdate>2014</risdate><volume>53</volume><issue>19</issue><spage>8171</spage><epage>8181</epage><pages>8171-8181</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><abstract>Parallel bicontinuous flows, which include stratified and core-annular flow, have applications in liquid–liquid extraction in microchannels. The flow regime has a significant impact on interphase mass transfer. Either stratified flow or core-annular flow can result in better extraction, depending on the physical properties of the fluids and solute and the operating conditions. In this work, we systematically compare the extraction performance of core-annular and stratified flow. Mathematical models are developed for each flow regime and solved semianalytically. Both models are validated with experimental data from the literature. Using the models we analyze both flow regimes across the parameter space. Two basis for comparison are used: (i) specified flow rates of the two fluid streams and (ii) specified pressure gradient and holdup (volume fraction of the carrier stream). For core-annular flow, two distinct cases are analyzed based on the position of the solute bearing carrier stream: (i) the carrier stream is the core fluid and the solvent stream is the annular fluid and (ii) the carrier stream is the annular fluid. The results are explained in terms of two key factors: the interfacial area and the ratio of diffusion time to residence time in each fluid. This new understanding is coalesced into a set of guidelines for selecting the parallel flow regime which enhances extraction performance.</abstract><pub>American Chemical Society</pub><doi>10.1021/ie4041803</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 2014-05, Vol.53 (19), p.8171-8181
issn 0888-5885
1520-5045
language eng
recordid cdi_proquest_miscellaneous_1705060537
source ACS Publications
subjects Annular
Carriers
Computational fluid dynamics
Fluid flow
Fluids
Liquid-liquid extraction
Mathematical models
Stratified flow
Streams
title Performance Comparison of Liquid–Liquid Extraction in Parallel Microflows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T14%3A03%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Comparison%20of%20Liquid%E2%80%93Liquid%20Extraction%20in%20Parallel%20Microflows&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Vir,%20Anil%20B&rft.date=2014-05-14&rft.volume=53&rft.issue=19&rft.spage=8171&rft.epage=8181&rft.pages=8171-8181&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/ie4041803&rft_dat=%3Cproquest_cross%3E1701080011%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1701080011&rft_id=info:pmid/&rfr_iscdi=true