Rapid and Accurate Machine Learning Recognition of High Performing Metal Organic Frameworks for CO2 Capture

In this work, we have developed quantitative structure–property relationship (QSPR) models using advanced machine learning algorithms that can rapidly and accurately recognize high-performing metal organic framework (MOF) materials for CO2 capture. More specifically, QSPR classifiers have been devel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2014-09, Vol.5 (17), p.3056-3060
Hauptverfasser: Fernandez, Michael, Boyd, Peter G, Daff, Thomas D, Aghaji, Mohammad Zein, Woo, Tom K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3060
container_issue 17
container_start_page 3056
container_title The journal of physical chemistry letters
container_volume 5
creator Fernandez, Michael
Boyd, Peter G
Daff, Thomas D
Aghaji, Mohammad Zein
Woo, Tom K
description In this work, we have developed quantitative structure–property relationship (QSPR) models using advanced machine learning algorithms that can rapidly and accurately recognize high-performing metal organic framework (MOF) materials for CO2 capture. More specifically, QSPR classifiers have been developed that can, in a fraction of a section, identify candidate MOFs with enhanced CO2 adsorption capacity (>1 mmol/g at 0.15 bar and >4 mmol/g at 1 bar). The models were tested on a large set of 292 050 MOFs that were not part of the training set. The QSPR classifier could recover 945 of the top 1000 MOFs in the test set while flagging only 10% of the whole library for compute intensive screening. Thus, using the machine learning classifiers as part of a high-throughput screening protocol would result in an order of magnitude reduction in compute time and allow intractably large structure libraries and search spaces to be screened.
doi_str_mv 10.1021/jz501331m
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1705001398</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1705001398</sourcerecordid><originalsourceid>FETCH-LOGICAL-a307t-bc2a5053236b61792b8b7cc159f0e0ef1b34859e352132765a2d59520a1e95653</originalsourceid><addsrcrecordid>eNpNkE1Lw0AURQdRbK0u_AMyG8FNdT46SWZZgrVCpVJ0HV6mL-m0ySROEkR_vSmt4updeIfL5RByzdk9Z4I_bL8V41Ly8oQMuZ5E45BH6vRfHpCLptkyFmgWhedkIAIRRkLpIdmtoLZrCm5Np8Z0HlqkL2A21iFdIHhnXU5XaKrc2dZWjlYZndt8Q1_RZ5Uv9-8XbKGgS5-Ds4bOPJT4WfldQ3uAxktBY6jbzuMlOcugaPDqeEfkffb4Fs_Hi-XTczxdjEGysB2nRoBiSgoZpAEPtUijNDSGK50xZJjxVE4ipVEqwaUIAwVirbQSDDhqFSg5IneH3tpXHx02bVLaxmBRgMOqaxIeMsV6YTrq0Zsj2qUlrpPa2xL8V_IrqAduDwCYJtlWnXf98oSzZC8--RMvfwAzlnE7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1705001398</pqid></control><display><type>article</type><title>Rapid and Accurate Machine Learning Recognition of High Performing Metal Organic Frameworks for CO2 Capture</title><source>ACS Publications</source><creator>Fernandez, Michael ; Boyd, Peter G ; Daff, Thomas D ; Aghaji, Mohammad Zein ; Woo, Tom K</creator><creatorcontrib>Fernandez, Michael ; Boyd, Peter G ; Daff, Thomas D ; Aghaji, Mohammad Zein ; Woo, Tom K</creatorcontrib><description>In this work, we have developed quantitative structure–property relationship (QSPR) models using advanced machine learning algorithms that can rapidly and accurately recognize high-performing metal organic framework (MOF) materials for CO2 capture. More specifically, QSPR classifiers have been developed that can, in a fraction of a section, identify candidate MOFs with enhanced CO2 adsorption capacity (&gt;1 mmol/g at 0.15 bar and &gt;4 mmol/g at 1 bar). The models were tested on a large set of 292 050 MOFs that were not part of the training set. The QSPR classifier could recover 945 of the top 1000 MOFs in the test set while flagging only 10% of the whole library for compute intensive screening. Thus, using the machine learning classifiers as part of a high-throughput screening protocol would result in an order of magnitude reduction in compute time and allow intractably large structure libraries and search spaces to be screened.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/jz501331m</identifier><identifier>PMID: 26278259</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Surfaces, Interfaces, Porous Materials, and Catalysis</subject><ispartof>The journal of physical chemistry letters, 2014-09, Vol.5 (17), p.3056-3060</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jz501331m$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jz501331m$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26278259$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fernandez, Michael</creatorcontrib><creatorcontrib>Boyd, Peter G</creatorcontrib><creatorcontrib>Daff, Thomas D</creatorcontrib><creatorcontrib>Aghaji, Mohammad Zein</creatorcontrib><creatorcontrib>Woo, Tom K</creatorcontrib><title>Rapid and Accurate Machine Learning Recognition of High Performing Metal Organic Frameworks for CO2 Capture</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>In this work, we have developed quantitative structure–property relationship (QSPR) models using advanced machine learning algorithms that can rapidly and accurately recognize high-performing metal organic framework (MOF) materials for CO2 capture. More specifically, QSPR classifiers have been developed that can, in a fraction of a section, identify candidate MOFs with enhanced CO2 adsorption capacity (&gt;1 mmol/g at 0.15 bar and &gt;4 mmol/g at 1 bar). The models were tested on a large set of 292 050 MOFs that were not part of the training set. The QSPR classifier could recover 945 of the top 1000 MOFs in the test set while flagging only 10% of the whole library for compute intensive screening. Thus, using the machine learning classifiers as part of a high-throughput screening protocol would result in an order of magnitude reduction in compute time and allow intractably large structure libraries and search spaces to be screened.</description><subject>Surfaces, Interfaces, Porous Materials, and Catalysis</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpNkE1Lw0AURQdRbK0u_AMyG8FNdT46SWZZgrVCpVJ0HV6mL-m0ySROEkR_vSmt4updeIfL5RByzdk9Z4I_bL8V41Ly8oQMuZ5E45BH6vRfHpCLptkyFmgWhedkIAIRRkLpIdmtoLZrCm5Np8Z0HlqkL2A21iFdIHhnXU5XaKrc2dZWjlYZndt8Q1_RZ5Uv9-8XbKGgS5-Ds4bOPJT4WfldQ3uAxktBY6jbzuMlOcugaPDqeEfkffb4Fs_Hi-XTczxdjEGysB2nRoBiSgoZpAEPtUijNDSGK50xZJjxVE4ipVEqwaUIAwVirbQSDDhqFSg5IneH3tpXHx02bVLaxmBRgMOqaxIeMsV6YTrq0Zsj2qUlrpPa2xL8V_IrqAduDwCYJtlWnXf98oSzZC8--RMvfwAzlnE7</recordid><startdate>20140904</startdate><enddate>20140904</enddate><creator>Fernandez, Michael</creator><creator>Boyd, Peter G</creator><creator>Daff, Thomas D</creator><creator>Aghaji, Mohammad Zein</creator><creator>Woo, Tom K</creator><general>American Chemical Society</general><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20140904</creationdate><title>Rapid and Accurate Machine Learning Recognition of High Performing Metal Organic Frameworks for CO2 Capture</title><author>Fernandez, Michael ; Boyd, Peter G ; Daff, Thomas D ; Aghaji, Mohammad Zein ; Woo, Tom K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a307t-bc2a5053236b61792b8b7cc159f0e0ef1b34859e352132765a2d59520a1e95653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Surfaces, Interfaces, Porous Materials, and Catalysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernandez, Michael</creatorcontrib><creatorcontrib>Boyd, Peter G</creatorcontrib><creatorcontrib>Daff, Thomas D</creatorcontrib><creatorcontrib>Aghaji, Mohammad Zein</creatorcontrib><creatorcontrib>Woo, Tom K</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernandez, Michael</au><au>Boyd, Peter G</au><au>Daff, Thomas D</au><au>Aghaji, Mohammad Zein</au><au>Woo, Tom K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid and Accurate Machine Learning Recognition of High Performing Metal Organic Frameworks for CO2 Capture</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2014-09-04</date><risdate>2014</risdate><volume>5</volume><issue>17</issue><spage>3056</spage><epage>3060</epage><pages>3056-3060</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>In this work, we have developed quantitative structure–property relationship (QSPR) models using advanced machine learning algorithms that can rapidly and accurately recognize high-performing metal organic framework (MOF) materials for CO2 capture. More specifically, QSPR classifiers have been developed that can, in a fraction of a section, identify candidate MOFs with enhanced CO2 adsorption capacity (&gt;1 mmol/g at 0.15 bar and &gt;4 mmol/g at 1 bar). The models were tested on a large set of 292 050 MOFs that were not part of the training set. The QSPR classifier could recover 945 of the top 1000 MOFs in the test set while flagging only 10% of the whole library for compute intensive screening. Thus, using the machine learning classifiers as part of a high-throughput screening protocol would result in an order of magnitude reduction in compute time and allow intractably large structure libraries and search spaces to be screened.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26278259</pmid><doi>10.1021/jz501331m</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2014-09, Vol.5 (17), p.3056-3060
issn 1948-7185
1948-7185
language eng
recordid cdi_proquest_miscellaneous_1705001398
source ACS Publications
subjects Surfaces, Interfaces, Porous Materials, and Catalysis
title Rapid and Accurate Machine Learning Recognition of High Performing Metal Organic Frameworks for CO2 Capture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A55%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20and%20Accurate%20Machine%20Learning%20Recognition%20of%20High%20Performing%20Metal%20Organic%20Frameworks%20for%20CO2%20Capture&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Fernandez,%20Michael&rft.date=2014-09-04&rft.volume=5&rft.issue=17&rft.spage=3056&rft.epage=3060&rft.pages=3056-3060&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/jz501331m&rft_dat=%3Cproquest_pubme%3E1705001398%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1705001398&rft_id=info:pmid/26278259&rfr_iscdi=true