Rapid and Accurate Machine Learning Recognition of High Performing Metal Organic Frameworks for CO2 Capture
In this work, we have developed quantitative structure–property relationship (QSPR) models using advanced machine learning algorithms that can rapidly and accurately recognize high-performing metal organic framework (MOF) materials for CO2 capture. More specifically, QSPR classifiers have been devel...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry letters 2014-09, Vol.5 (17), p.3056-3060 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3060 |
---|---|
container_issue | 17 |
container_start_page | 3056 |
container_title | The journal of physical chemistry letters |
container_volume | 5 |
creator | Fernandez, Michael Boyd, Peter G Daff, Thomas D Aghaji, Mohammad Zein Woo, Tom K |
description | In this work, we have developed quantitative structure–property relationship (QSPR) models using advanced machine learning algorithms that can rapidly and accurately recognize high-performing metal organic framework (MOF) materials for CO2 capture. More specifically, QSPR classifiers have been developed that can, in a fraction of a section, identify candidate MOFs with enhanced CO2 adsorption capacity (>1 mmol/g at 0.15 bar and >4 mmol/g at 1 bar). The models were tested on a large set of 292 050 MOFs that were not part of the training set. The QSPR classifier could recover 945 of the top 1000 MOFs in the test set while flagging only 10% of the whole library for compute intensive screening. Thus, using the machine learning classifiers as part of a high-throughput screening protocol would result in an order of magnitude reduction in compute time and allow intractably large structure libraries and search spaces to be screened. |
doi_str_mv | 10.1021/jz501331m |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1705001398</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1705001398</sourcerecordid><originalsourceid>FETCH-LOGICAL-a307t-bc2a5053236b61792b8b7cc159f0e0ef1b34859e352132765a2d59520a1e95653</originalsourceid><addsrcrecordid>eNpNkE1Lw0AURQdRbK0u_AMyG8FNdT46SWZZgrVCpVJ0HV6mL-m0ySROEkR_vSmt4updeIfL5RByzdk9Z4I_bL8V41Ly8oQMuZ5E45BH6vRfHpCLptkyFmgWhedkIAIRRkLpIdmtoLZrCm5Np8Z0HlqkL2A21iFdIHhnXU5XaKrc2dZWjlYZndt8Q1_RZ5Uv9-8XbKGgS5-Ds4bOPJT4WfldQ3uAxktBY6jbzuMlOcugaPDqeEfkffb4Fs_Hi-XTczxdjEGysB2nRoBiSgoZpAEPtUijNDSGK50xZJjxVE4ipVEqwaUIAwVirbQSDDhqFSg5IneH3tpXHx02bVLaxmBRgMOqaxIeMsV6YTrq0Zsj2qUlrpPa2xL8V_IrqAduDwCYJtlWnXf98oSzZC8--RMvfwAzlnE7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1705001398</pqid></control><display><type>article</type><title>Rapid and Accurate Machine Learning Recognition of High Performing Metal Organic Frameworks for CO2 Capture</title><source>ACS Publications</source><creator>Fernandez, Michael ; Boyd, Peter G ; Daff, Thomas D ; Aghaji, Mohammad Zein ; Woo, Tom K</creator><creatorcontrib>Fernandez, Michael ; Boyd, Peter G ; Daff, Thomas D ; Aghaji, Mohammad Zein ; Woo, Tom K</creatorcontrib><description>In this work, we have developed quantitative structure–property relationship (QSPR) models using advanced machine learning algorithms that can rapidly and accurately recognize high-performing metal organic framework (MOF) materials for CO2 capture. More specifically, QSPR classifiers have been developed that can, in a fraction of a section, identify candidate MOFs with enhanced CO2 adsorption capacity (>1 mmol/g at 0.15 bar and >4 mmol/g at 1 bar). The models were tested on a large set of 292 050 MOFs that were not part of the training set. The QSPR classifier could recover 945 of the top 1000 MOFs in the test set while flagging only 10% of the whole library for compute intensive screening. Thus, using the machine learning classifiers as part of a high-throughput screening protocol would result in an order of magnitude reduction in compute time and allow intractably large structure libraries and search spaces to be screened.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/jz501331m</identifier><identifier>PMID: 26278259</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Surfaces, Interfaces, Porous Materials, and Catalysis</subject><ispartof>The journal of physical chemistry letters, 2014-09, Vol.5 (17), p.3056-3060</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jz501331m$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jz501331m$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26278259$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fernandez, Michael</creatorcontrib><creatorcontrib>Boyd, Peter G</creatorcontrib><creatorcontrib>Daff, Thomas D</creatorcontrib><creatorcontrib>Aghaji, Mohammad Zein</creatorcontrib><creatorcontrib>Woo, Tom K</creatorcontrib><title>Rapid and Accurate Machine Learning Recognition of High Performing Metal Organic Frameworks for CO2 Capture</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>In this work, we have developed quantitative structure–property relationship (QSPR) models using advanced machine learning algorithms that can rapidly and accurately recognize high-performing metal organic framework (MOF) materials for CO2 capture. More specifically, QSPR classifiers have been developed that can, in a fraction of a section, identify candidate MOFs with enhanced CO2 adsorption capacity (>1 mmol/g at 0.15 bar and >4 mmol/g at 1 bar). The models were tested on a large set of 292 050 MOFs that were not part of the training set. The QSPR classifier could recover 945 of the top 1000 MOFs in the test set while flagging only 10% of the whole library for compute intensive screening. Thus, using the machine learning classifiers as part of a high-throughput screening protocol would result in an order of magnitude reduction in compute time and allow intractably large structure libraries and search spaces to be screened.</description><subject>Surfaces, Interfaces, Porous Materials, and Catalysis</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpNkE1Lw0AURQdRbK0u_AMyG8FNdT46SWZZgrVCpVJ0HV6mL-m0ySROEkR_vSmt4updeIfL5RByzdk9Z4I_bL8V41Ly8oQMuZ5E45BH6vRfHpCLptkyFmgWhedkIAIRRkLpIdmtoLZrCm5Np8Z0HlqkL2A21iFdIHhnXU5XaKrc2dZWjlYZndt8Q1_RZ5Uv9-8XbKGgS5-Ds4bOPJT4WfldQ3uAxktBY6jbzuMlOcugaPDqeEfkffb4Fs_Hi-XTczxdjEGysB2nRoBiSgoZpAEPtUijNDSGK50xZJjxVE4ipVEqwaUIAwVirbQSDDhqFSg5IneH3tpXHx02bVLaxmBRgMOqaxIeMsV6YTrq0Zsj2qUlrpPa2xL8V_IrqAduDwCYJtlWnXf98oSzZC8--RMvfwAzlnE7</recordid><startdate>20140904</startdate><enddate>20140904</enddate><creator>Fernandez, Michael</creator><creator>Boyd, Peter G</creator><creator>Daff, Thomas D</creator><creator>Aghaji, Mohammad Zein</creator><creator>Woo, Tom K</creator><general>American Chemical Society</general><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20140904</creationdate><title>Rapid and Accurate Machine Learning Recognition of High Performing Metal Organic Frameworks for CO2 Capture</title><author>Fernandez, Michael ; Boyd, Peter G ; Daff, Thomas D ; Aghaji, Mohammad Zein ; Woo, Tom K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a307t-bc2a5053236b61792b8b7cc159f0e0ef1b34859e352132765a2d59520a1e95653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Surfaces, Interfaces, Porous Materials, and Catalysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernandez, Michael</creatorcontrib><creatorcontrib>Boyd, Peter G</creatorcontrib><creatorcontrib>Daff, Thomas D</creatorcontrib><creatorcontrib>Aghaji, Mohammad Zein</creatorcontrib><creatorcontrib>Woo, Tom K</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernandez, Michael</au><au>Boyd, Peter G</au><au>Daff, Thomas D</au><au>Aghaji, Mohammad Zein</au><au>Woo, Tom K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid and Accurate Machine Learning Recognition of High Performing Metal Organic Frameworks for CO2 Capture</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2014-09-04</date><risdate>2014</risdate><volume>5</volume><issue>17</issue><spage>3056</spage><epage>3060</epage><pages>3056-3060</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>In this work, we have developed quantitative structure–property relationship (QSPR) models using advanced machine learning algorithms that can rapidly and accurately recognize high-performing metal organic framework (MOF) materials for CO2 capture. More specifically, QSPR classifiers have been developed that can, in a fraction of a section, identify candidate MOFs with enhanced CO2 adsorption capacity (>1 mmol/g at 0.15 bar and >4 mmol/g at 1 bar). The models were tested on a large set of 292 050 MOFs that were not part of the training set. The QSPR classifier could recover 945 of the top 1000 MOFs in the test set while flagging only 10% of the whole library for compute intensive screening. Thus, using the machine learning classifiers as part of a high-throughput screening protocol would result in an order of magnitude reduction in compute time and allow intractably large structure libraries and search spaces to be screened.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26278259</pmid><doi>10.1021/jz501331m</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1948-7185 |
ispartof | The journal of physical chemistry letters, 2014-09, Vol.5 (17), p.3056-3060 |
issn | 1948-7185 1948-7185 |
language | eng |
recordid | cdi_proquest_miscellaneous_1705001398 |
source | ACS Publications |
subjects | Surfaces, Interfaces, Porous Materials, and Catalysis |
title | Rapid and Accurate Machine Learning Recognition of High Performing Metal Organic Frameworks for CO2 Capture |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A55%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20and%20Accurate%20Machine%20Learning%20Recognition%20of%20High%20Performing%20Metal%20Organic%20Frameworks%20for%20CO2%20Capture&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Fernandez,%20Michael&rft.date=2014-09-04&rft.volume=5&rft.issue=17&rft.spage=3056&rft.epage=3060&rft.pages=3056-3060&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/jz501331m&rft_dat=%3Cproquest_pubme%3E1705001398%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1705001398&rft_id=info:pmid/26278259&rfr_iscdi=true |