Structural Dynamics of Hydrated Phospholipid Surfaces Probed by Ultrafast 2D Spectroscopy of Phosphate Vibrations

The properties of biomembranes depend in a decisive way on interactions of phospholipids with hydrating water molecules. To map structural dynamics of a phospholipid–water interface on the length and time scale of molecular motions, we introduce the phospholipid symmetric and asymmetric phosphate st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2014-02, Vol.5 (3), p.506-511
Hauptverfasser: Costard, Rene, Heisler, Ismael A, Elsaesser, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 511
container_issue 3
container_start_page 506
container_title The journal of physical chemistry letters
container_volume 5
creator Costard, Rene
Heisler, Ismael A
Elsaesser, Thomas
description The properties of biomembranes depend in a decisive way on interactions of phospholipids with hydrating water molecules. To map structural dynamics of a phospholipid–water interface on the length and time scale of molecular motions, we introduce the phospholipid symmetric and asymmetric phosphate stretch vibrations as probes of interfacial hydrogen bonds and electrostatic interactions. The first two-dimensional infrared spectra of such modes and a line shape analysis by density matrix theory reveal two distinct structural dynamics components; the first 300 fs contribution is related to spatial fluctuations of charged phospholipid head groups with additional water contributions at high hydration levels; the second accounts for water–phosphate hydrogen bonds persisting longer than 10 ps. Our results reveal a relatively rigid hydration shell around phosphate groups, a behavior relevant for numerous biomolecular systems.
doi_str_mv 10.1021/jz402493b
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1704351590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1704351590</sourcerecordid><originalsourceid>FETCH-LOGICAL-a381t-de733e523ae1318681ee9ed3d87b0ddc0c63945c6a1a3fc20d36ba4ac1fd22e3</originalsourceid><addsrcrecordid>eNptkE1Lw0AQhhdRbP04-AdkL4IeovuRz6O0aoWChVavYbM7oSlJN93dHOKvd0tq8eBpBuaZh5kXoRtKHilh9GnzHRIWZrw4QWOahWmQ0DQ6_dOP0IW1G0LijKTJORqxmCVxTOgY7ZbOdNJ1RtR42m9FU0mLdYlnvTLCgcKLtbbtWtdVWym87EwpJFi8MLrww6LHn7UzohTWYTbFyxakM9pK3fZ7y7DsPfirKryv0lt7hc5KUVu4PtRLtHp9WU1mwfzj7X3yPA8ET6kLFCScQ8S4AMppGqcUIAPFVZoURClJZMyzMJKxoIKXkhHF40KEQtJSMQb8Et0P2tboXQfW5U1lJdS12ILubE4TEvKIRhnx6MOASn-6NVDmrakaYfqcknwfcH4M2LO3B21XNKCO5G-iHrgbACFtvtGd2fon_xH9AE8KhBU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1704351590</pqid></control><display><type>article</type><title>Structural Dynamics of Hydrated Phospholipid Surfaces Probed by Ultrafast 2D Spectroscopy of Phosphate Vibrations</title><source>American Chemical Society Journals</source><creator>Costard, Rene ; Heisler, Ismael A ; Elsaesser, Thomas</creator><creatorcontrib>Costard, Rene ; Heisler, Ismael A ; Elsaesser, Thomas</creatorcontrib><description>The properties of biomembranes depend in a decisive way on interactions of phospholipids with hydrating water molecules. To map structural dynamics of a phospholipid–water interface on the length and time scale of molecular motions, we introduce the phospholipid symmetric and asymmetric phosphate stretch vibrations as probes of interfacial hydrogen bonds and electrostatic interactions. The first two-dimensional infrared spectra of such modes and a line shape analysis by density matrix theory reveal two distinct structural dynamics components; the first 300 fs contribution is related to spatial fluctuations of charged phospholipid head groups with additional water contributions at high hydration levels; the second accounts for water–phosphate hydrogen bonds persisting longer than 10 ps. Our results reveal a relatively rigid hydration shell around phosphate groups, a behavior relevant for numerous biomolecular systems.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/jz402493b</identifier><identifier>PMID: 26276601</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biophysical Chemistry and Biomolecules</subject><ispartof>The journal of physical chemistry letters, 2014-02, Vol.5 (3), p.506-511</ispartof><rights>Copyright © 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a381t-de733e523ae1318681ee9ed3d87b0ddc0c63945c6a1a3fc20d36ba4ac1fd22e3</citedby><cites>FETCH-LOGICAL-a381t-de733e523ae1318681ee9ed3d87b0ddc0c63945c6a1a3fc20d36ba4ac1fd22e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jz402493b$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jz402493b$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26276601$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Costard, Rene</creatorcontrib><creatorcontrib>Heisler, Ismael A</creatorcontrib><creatorcontrib>Elsaesser, Thomas</creatorcontrib><title>Structural Dynamics of Hydrated Phospholipid Surfaces Probed by Ultrafast 2D Spectroscopy of Phosphate Vibrations</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>The properties of biomembranes depend in a decisive way on interactions of phospholipids with hydrating water molecules. To map structural dynamics of a phospholipid–water interface on the length and time scale of molecular motions, we introduce the phospholipid symmetric and asymmetric phosphate stretch vibrations as probes of interfacial hydrogen bonds and electrostatic interactions. The first two-dimensional infrared spectra of such modes and a line shape analysis by density matrix theory reveal two distinct structural dynamics components; the first 300 fs contribution is related to spatial fluctuations of charged phospholipid head groups with additional water contributions at high hydration levels; the second accounts for water–phosphate hydrogen bonds persisting longer than 10 ps. Our results reveal a relatively rigid hydration shell around phosphate groups, a behavior relevant for numerous biomolecular systems.</description><subject>Biophysical Chemistry and Biomolecules</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNptkE1Lw0AQhhdRbP04-AdkL4IeovuRz6O0aoWChVavYbM7oSlJN93dHOKvd0tq8eBpBuaZh5kXoRtKHilh9GnzHRIWZrw4QWOahWmQ0DQ6_dOP0IW1G0LijKTJORqxmCVxTOgY7ZbOdNJ1RtR42m9FU0mLdYlnvTLCgcKLtbbtWtdVWym87EwpJFi8MLrww6LHn7UzohTWYTbFyxakM9pK3fZ7y7DsPfirKryv0lt7hc5KUVu4PtRLtHp9WU1mwfzj7X3yPA8ET6kLFCScQ8S4AMppGqcUIAPFVZoURClJZMyzMJKxoIKXkhHF40KEQtJSMQb8Et0P2tboXQfW5U1lJdS12ILubE4TEvKIRhnx6MOASn-6NVDmrakaYfqcknwfcH4M2LO3B21XNKCO5G-iHrgbACFtvtGd2fon_xH9AE8KhBU</recordid><startdate>20140206</startdate><enddate>20140206</enddate><creator>Costard, Rene</creator><creator>Heisler, Ismael A</creator><creator>Elsaesser, Thomas</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20140206</creationdate><title>Structural Dynamics of Hydrated Phospholipid Surfaces Probed by Ultrafast 2D Spectroscopy of Phosphate Vibrations</title><author>Costard, Rene ; Heisler, Ismael A ; Elsaesser, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a381t-de733e523ae1318681ee9ed3d87b0ddc0c63945c6a1a3fc20d36ba4ac1fd22e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Biophysical Chemistry and Biomolecules</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Costard, Rene</creatorcontrib><creatorcontrib>Heisler, Ismael A</creatorcontrib><creatorcontrib>Elsaesser, Thomas</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Costard, Rene</au><au>Heisler, Ismael A</au><au>Elsaesser, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Dynamics of Hydrated Phospholipid Surfaces Probed by Ultrafast 2D Spectroscopy of Phosphate Vibrations</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2014-02-06</date><risdate>2014</risdate><volume>5</volume><issue>3</issue><spage>506</spage><epage>511</epage><pages>506-511</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>The properties of biomembranes depend in a decisive way on interactions of phospholipids with hydrating water molecules. To map structural dynamics of a phospholipid–water interface on the length and time scale of molecular motions, we introduce the phospholipid symmetric and asymmetric phosphate stretch vibrations as probes of interfacial hydrogen bonds and electrostatic interactions. The first two-dimensional infrared spectra of such modes and a line shape analysis by density matrix theory reveal two distinct structural dynamics components; the first 300 fs contribution is related to spatial fluctuations of charged phospholipid head groups with additional water contributions at high hydration levels; the second accounts for water–phosphate hydrogen bonds persisting longer than 10 ps. Our results reveal a relatively rigid hydration shell around phosphate groups, a behavior relevant for numerous biomolecular systems.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26276601</pmid><doi>10.1021/jz402493b</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2014-02, Vol.5 (3), p.506-511
issn 1948-7185
1948-7185
language eng
recordid cdi_proquest_miscellaneous_1704351590
source American Chemical Society Journals
subjects Biophysical Chemistry and Biomolecules
title Structural Dynamics of Hydrated Phospholipid Surfaces Probed by Ultrafast 2D Spectroscopy of Phosphate Vibrations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T19%3A12%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Dynamics%20of%20Hydrated%20Phospholipid%20Surfaces%20Probed%20by%20Ultrafast%202D%20Spectroscopy%20of%20Phosphate%20Vibrations&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Costard,%20Rene&rft.date=2014-02-06&rft.volume=5&rft.issue=3&rft.spage=506&rft.epage=511&rft.pages=506-511&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/jz402493b&rft_dat=%3Cproquest_cross%3E1704351590%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1704351590&rft_id=info:pmid/26276601&rfr_iscdi=true