Metabolism of promutagens catalyzed by Drosophila melanogaster CYP6A2 enzyme in Saccharomyces cerevisiae
The somatic mutation and recombination test (SMART) in Drosophila melanogaster allows screening of chemicals for genotoxicity in a multicellular organism. In order to correlate data obtained in the SMART with those from genotoxicity tests in rodents, it is important to learn more on the variety of d...
Gespeichert in:
Veröffentlicht in: | Environmental and molecular mutagenesis 1996, Vol.27 (1), p.46-58 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 58 |
---|---|
container_issue | 1 |
container_start_page | 46 |
container_title | Environmental and molecular mutagenesis |
container_volume | 27 |
creator | Saner, Catherine Weibel, Beatrice Würgler, Friedrich E. Sengstag, Christian |
description | The somatic mutation and recombination test (SMART) in Drosophila melanogaster allows screening of chemicals for genotoxicity in a multicellular organism. In order to correlate data obtained in the SMART with those from genotoxicity tests in rodents, it is important to learn more on the variety of drug‐metabolizing enzymes present in this insect and to identify their substrate specificities. In this study we have concentrated on the phase I enzyme cytochrome P450 6A2, which is the first cytochrome P450 cloned from Drosophila. A genomic CYP6A2 DNA fragment and its corresponding cDNA were cloned and sequenced, revealing a previously unidentified intron with an inframe stop codon. This intron is invariantly present in an insecticide resistant [OR(R)] and a sensitive (flr3) strain. Developmental Northern analysis of CYP6A2 mRNA demonstrated a peak of expression in the third larval and pupal stage. CYP6A2 mRNA was found to be present in the insecticide‐resistant strain at higher levels than in the insecticide‐sensitive strain. Therefore, insecticide resistance might be correlated with enhanced CYP6A2 expression. The substrate specificity of CYP6A2 enzyme was investigated by coexpressing CYP6A2 cDNA with the cDNA for human NADPH‐cytochrome P450 reductase in the yeast Saccharomyces cerevisiae. The transformed strain activated the mycotoxin aflatoxin B1 to a product that induced gene conversion, scored at the trp5 locus. Two other compounds, 7, 12‐dimethylbenz‐[a]anthracene (DMBA) and 3‐amino‐1‐methyl‐5H‐pyrido[4,3‐b]indole (Trp‐P‐2), were metabolized in the transformed strain to cytotoxic products. © 1996 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/(SICI)1098-2280(1996)27:1<46::AID-EM7>3.0.CO;2-C |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_17043042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17043042</sourcerecordid><originalsourceid>FETCH-LOGICAL-i3767-d9be7a4e651e2edae5a850a95eaffb82290bc165a791e4a349f631c534a800513</originalsourceid><addsrcrecordid>eNo9kV2L00AUQIMoa139CUIeRHYfUud7MqsIJfthobstrCL6crlJb7azJk3NtGr215vQ0qdhuIfDzD1RlHI25oyJD2f302x6zplLEyFSdsadM-fCXvBPylxcTKaXydWt_SzHbJzNP4okexaNjvDzaMRSJxNjnHgZvQrhkTHOlRMn0UlqhHYqHUWrW9pi3lQ-1HFTxpu2qXdbfKB1iAvcYtU90TLOu_iybUKzWfkK45oqXDcPGLbUxtmPhZmImNZPXU2xX8f3WBQr7DVdQb2DWvrjg0d6Hb0osQr05nCeRt-ur75mX5LZ_GaaTWaJl9bYZOlysqjIaE6ClkgaU83QacKyzFMhHMsLbjRax0mhVK40khdaKkwZ01yeRu_33v4rv3cUtlD7UFDVv5maXQBumZJMiR58ewB3eU1L2LS-xraDw2r6-bvDHEOBVdniuvDhiEnGtbaqx-Z77K-vqDuOOYMhIAz9YEgCQxIY-oGwwEEZ6PNBnw8kMMjmICAbrr0x2Rt9v-F_RyO2v8BYaTV8v7uBNJst7q5_LoDL_0QZoZ0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17043042</pqid></control><display><type>article</type><title>Metabolism of promutagens catalyzed by Drosophila melanogaster CYP6A2 enzyme in Saccharomyces cerevisiae</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Saner, Catherine ; Weibel, Beatrice ; Würgler, Friedrich E. ; Sengstag, Christian</creator><creatorcontrib>Saner, Catherine ; Weibel, Beatrice ; Würgler, Friedrich E. ; Sengstag, Christian</creatorcontrib><description>The somatic mutation and recombination test (SMART) in Drosophila melanogaster allows screening of chemicals for genotoxicity in a multicellular organism. In order to correlate data obtained in the SMART with those from genotoxicity tests in rodents, it is important to learn more on the variety of drug‐metabolizing enzymes present in this insect and to identify their substrate specificities. In this study we have concentrated on the phase I enzyme cytochrome P450 6A2, which is the first cytochrome P450 cloned from Drosophila. A genomic CYP6A2 DNA fragment and its corresponding cDNA were cloned and sequenced, revealing a previously unidentified intron with an inframe stop codon. This intron is invariantly present in an insecticide resistant [OR(R)] and a sensitive (flr3) strain. Developmental Northern analysis of CYP6A2 mRNA demonstrated a peak of expression in the third larval and pupal stage. CYP6A2 mRNA was found to be present in the insecticide‐resistant strain at higher levels than in the insecticide‐sensitive strain. Therefore, insecticide resistance might be correlated with enhanced CYP6A2 expression. The substrate specificity of CYP6A2 enzyme was investigated by coexpressing CYP6A2 cDNA with the cDNA for human NADPH‐cytochrome P450 reductase in the yeast Saccharomyces cerevisiae. The transformed strain activated the mycotoxin aflatoxin B1 to a product that induced gene conversion, scored at the trp5 locus. Two other compounds, 7, 12‐dimethylbenz‐[a]anthracene (DMBA) and 3‐amino‐1‐methyl‐5H‐pyrido[4,3‐b]indole (Trp‐P‐2), were metabolized in the transformed strain to cytotoxic products. © 1996 Wiley‐Liss, Inc.</description><identifier>ISSN: 0893-6692</identifier><identifier>EISSN: 1098-2280</identifier><identifier>DOI: 10.1002/(SICI)1098-2280(1996)27:1<46::AID-EM7>3.0.CO;2-C</identifier><identifier>PMID: 8625948</identifier><identifier>CODEN: EMMUEG</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>9,10-Dimethyl-1,2-benzanthracene - pharmacokinetics ; Aflatoxin B1 - pharmacokinetics ; Amino Acid Sequence ; Animals ; Base Sequence ; Biological and medical sciences ; Biotransformation - genetics ; Carbolines - pharmacokinetics ; Cytochrome P-450 Enzyme System - genetics ; Cytochrome P-450 Enzyme System - metabolism ; cytotoxicity ; Drosophila melanogaster ; Drosophila melanogaster - enzymology ; Drosophila melanogaster - genetics ; Drosophila melanogaster - growth & development ; Enzyme Induction ; Escherichia coli - genetics ; Fundamental and applied biological sciences. Psychology ; gene conversion ; Gene Conversion - drug effects ; Gene Expression Regulation, Developmental ; Genes, Insect ; Genes, Synthetic ; Genes. Genome ; Humans ; insecticide resistance ; Introns ; Larva ; Microsomes - enzymology ; Molecular and cellular biology ; Molecular genetics ; Molecular Sequence Data ; Mutagenicity Tests ; Mutagens - pharmacokinetics ; NADPH-cytochrome P450 oxidoreductase ; NADPH-Ferrihemoprotein Reductase - genetics ; NADPH-Ferrihemoprotein Reductase - metabolism ; Organ Specificity ; Prodrugs - pharmacokinetics ; Recombinant Fusion Proteins - metabolism ; recombination test ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; xenobiotic metabolism</subject><ispartof>Environmental and molecular mutagenesis, 1996, Vol.27 (1), p.46-58</ispartof><rights>Copyright © 1996 Wiley‐Liss, Inc.</rights><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F%28SICI%291098-2280%281996%2927%3A1%3C46%3A%3AAID-EM7%3E3.0.CO%3B2-C$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F%28SICI%291098-2280%281996%2927%3A1%3C46%3A%3AAID-EM7%3E3.0.CO%3B2-C$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,4022,27922,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3015574$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8625948$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Saner, Catherine</creatorcontrib><creatorcontrib>Weibel, Beatrice</creatorcontrib><creatorcontrib>Würgler, Friedrich E.</creatorcontrib><creatorcontrib>Sengstag, Christian</creatorcontrib><title>Metabolism of promutagens catalyzed by Drosophila melanogaster CYP6A2 enzyme in Saccharomyces cerevisiae</title><title>Environmental and molecular mutagenesis</title><addtitle>Environ. Mol. Mutagen</addtitle><description>The somatic mutation and recombination test (SMART) in Drosophila melanogaster allows screening of chemicals for genotoxicity in a multicellular organism. In order to correlate data obtained in the SMART with those from genotoxicity tests in rodents, it is important to learn more on the variety of drug‐metabolizing enzymes present in this insect and to identify their substrate specificities. In this study we have concentrated on the phase I enzyme cytochrome P450 6A2, which is the first cytochrome P450 cloned from Drosophila. A genomic CYP6A2 DNA fragment and its corresponding cDNA were cloned and sequenced, revealing a previously unidentified intron with an inframe stop codon. This intron is invariantly present in an insecticide resistant [OR(R)] and a sensitive (flr3) strain. Developmental Northern analysis of CYP6A2 mRNA demonstrated a peak of expression in the third larval and pupal stage. CYP6A2 mRNA was found to be present in the insecticide‐resistant strain at higher levels than in the insecticide‐sensitive strain. Therefore, insecticide resistance might be correlated with enhanced CYP6A2 expression. The substrate specificity of CYP6A2 enzyme was investigated by coexpressing CYP6A2 cDNA with the cDNA for human NADPH‐cytochrome P450 reductase in the yeast Saccharomyces cerevisiae. The transformed strain activated the mycotoxin aflatoxin B1 to a product that induced gene conversion, scored at the trp5 locus. Two other compounds, 7, 12‐dimethylbenz‐[a]anthracene (DMBA) and 3‐amino‐1‐methyl‐5H‐pyrido[4,3‐b]indole (Trp‐P‐2), were metabolized in the transformed strain to cytotoxic products. © 1996 Wiley‐Liss, Inc.</description><subject>9,10-Dimethyl-1,2-benzanthracene - pharmacokinetics</subject><subject>Aflatoxin B1 - pharmacokinetics</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>Biological and medical sciences</subject><subject>Biotransformation - genetics</subject><subject>Carbolines - pharmacokinetics</subject><subject>Cytochrome P-450 Enzyme System - genetics</subject><subject>Cytochrome P-450 Enzyme System - metabolism</subject><subject>cytotoxicity</subject><subject>Drosophila melanogaster</subject><subject>Drosophila melanogaster - enzymology</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila melanogaster - growth & development</subject><subject>Enzyme Induction</subject><subject>Escherichia coli - genetics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>gene conversion</subject><subject>Gene Conversion - drug effects</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Genes, Insect</subject><subject>Genes, Synthetic</subject><subject>Genes. Genome</subject><subject>Humans</subject><subject>insecticide resistance</subject><subject>Introns</subject><subject>Larva</subject><subject>Microsomes - enzymology</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Molecular Sequence Data</subject><subject>Mutagenicity Tests</subject><subject>Mutagens - pharmacokinetics</subject><subject>NADPH-cytochrome P450 oxidoreductase</subject><subject>NADPH-Ferrihemoprotein Reductase - genetics</subject><subject>NADPH-Ferrihemoprotein Reductase - metabolism</subject><subject>Organ Specificity</subject><subject>Prodrugs - pharmacokinetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>recombination test</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>xenobiotic metabolism</subject><issn>0893-6692</issn><issn>1098-2280</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kV2L00AUQIMoa139CUIeRHYfUud7MqsIJfthobstrCL6crlJb7azJk3NtGr215vQ0qdhuIfDzD1RlHI25oyJD2f302x6zplLEyFSdsadM-fCXvBPylxcTKaXydWt_SzHbJzNP4okexaNjvDzaMRSJxNjnHgZvQrhkTHOlRMn0UlqhHYqHUWrW9pi3lQ-1HFTxpu2qXdbfKB1iAvcYtU90TLOu_iybUKzWfkK45oqXDcPGLbUxtmPhZmImNZPXU2xX8f3WBQr7DVdQb2DWvrjg0d6Hb0osQr05nCeRt-ur75mX5LZ_GaaTWaJl9bYZOlysqjIaE6ClkgaU83QacKyzFMhHMsLbjRax0mhVK40khdaKkwZ01yeRu_33v4rv3cUtlD7UFDVv5maXQBumZJMiR58ewB3eU1L2LS-xraDw2r6-bvDHEOBVdniuvDhiEnGtbaqx-Z77K-vqDuOOYMhIAz9YEgCQxIY-oGwwEEZ6PNBnw8kMMjmICAbrr0x2Rt9v-F_RyO2v8BYaTV8v7uBNJst7q5_LoDL_0QZoZ0</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>Saner, Catherine</creator><creator>Weibel, Beatrice</creator><creator>Würgler, Friedrich E.</creator><creator>Sengstag, Christian</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley-Liss</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7SS</scope><scope>7U7</scope><scope>C1K</scope><scope>M7N</scope></search><sort><creationdate>1996</creationdate><title>Metabolism of promutagens catalyzed by Drosophila melanogaster CYP6A2 enzyme in Saccharomyces cerevisiae</title><author>Saner, Catherine ; Weibel, Beatrice ; Würgler, Friedrich E. ; Sengstag, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i3767-d9be7a4e651e2edae5a850a95eaffb82290bc165a791e4a349f631c534a800513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>9,10-Dimethyl-1,2-benzanthracene - pharmacokinetics</topic><topic>Aflatoxin B1 - pharmacokinetics</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>Biological and medical sciences</topic><topic>Biotransformation - genetics</topic><topic>Carbolines - pharmacokinetics</topic><topic>Cytochrome P-450 Enzyme System - genetics</topic><topic>Cytochrome P-450 Enzyme System - metabolism</topic><topic>cytotoxicity</topic><topic>Drosophila melanogaster</topic><topic>Drosophila melanogaster - enzymology</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila melanogaster - growth & development</topic><topic>Enzyme Induction</topic><topic>Escherichia coli - genetics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>gene conversion</topic><topic>Gene Conversion - drug effects</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Genes, Insect</topic><topic>Genes, Synthetic</topic><topic>Genes. Genome</topic><topic>Humans</topic><topic>insecticide resistance</topic><topic>Introns</topic><topic>Larva</topic><topic>Microsomes - enzymology</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Molecular Sequence Data</topic><topic>Mutagenicity Tests</topic><topic>Mutagens - pharmacokinetics</topic><topic>NADPH-cytochrome P450 oxidoreductase</topic><topic>NADPH-Ferrihemoprotein Reductase - genetics</topic><topic>NADPH-Ferrihemoprotein Reductase - metabolism</topic><topic>Organ Specificity</topic><topic>Prodrugs - pharmacokinetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>recombination test</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>xenobiotic metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saner, Catherine</creatorcontrib><creatorcontrib>Weibel, Beatrice</creatorcontrib><creatorcontrib>Würgler, Friedrich E.</creatorcontrib><creatorcontrib>Sengstag, Christian</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><jtitle>Environmental and molecular mutagenesis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saner, Catherine</au><au>Weibel, Beatrice</au><au>Würgler, Friedrich E.</au><au>Sengstag, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolism of promutagens catalyzed by Drosophila melanogaster CYP6A2 enzyme in Saccharomyces cerevisiae</atitle><jtitle>Environmental and molecular mutagenesis</jtitle><addtitle>Environ. Mol. Mutagen</addtitle><date>1996</date><risdate>1996</risdate><volume>27</volume><issue>1</issue><spage>46</spage><epage>58</epage><pages>46-58</pages><issn>0893-6692</issn><eissn>1098-2280</eissn><coden>EMMUEG</coden><abstract>The somatic mutation and recombination test (SMART) in Drosophila melanogaster allows screening of chemicals for genotoxicity in a multicellular organism. In order to correlate data obtained in the SMART with those from genotoxicity tests in rodents, it is important to learn more on the variety of drug‐metabolizing enzymes present in this insect and to identify their substrate specificities. In this study we have concentrated on the phase I enzyme cytochrome P450 6A2, which is the first cytochrome P450 cloned from Drosophila. A genomic CYP6A2 DNA fragment and its corresponding cDNA were cloned and sequenced, revealing a previously unidentified intron with an inframe stop codon. This intron is invariantly present in an insecticide resistant [OR(R)] and a sensitive (flr3) strain. Developmental Northern analysis of CYP6A2 mRNA demonstrated a peak of expression in the third larval and pupal stage. CYP6A2 mRNA was found to be present in the insecticide‐resistant strain at higher levels than in the insecticide‐sensitive strain. Therefore, insecticide resistance might be correlated with enhanced CYP6A2 expression. The substrate specificity of CYP6A2 enzyme was investigated by coexpressing CYP6A2 cDNA with the cDNA for human NADPH‐cytochrome P450 reductase in the yeast Saccharomyces cerevisiae. The transformed strain activated the mycotoxin aflatoxin B1 to a product that induced gene conversion, scored at the trp5 locus. Two other compounds, 7, 12‐dimethylbenz‐[a]anthracene (DMBA) and 3‐amino‐1‐methyl‐5H‐pyrido[4,3‐b]indole (Trp‐P‐2), were metabolized in the transformed strain to cytotoxic products. © 1996 Wiley‐Liss, Inc.</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>8625948</pmid><doi>10.1002/(SICI)1098-2280(1996)27:1<46::AID-EM7>3.0.CO;2-C</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-6692 |
ispartof | Environmental and molecular mutagenesis, 1996, Vol.27 (1), p.46-58 |
issn | 0893-6692 1098-2280 |
language | eng |
recordid | cdi_proquest_miscellaneous_17043042 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | 9,10-Dimethyl-1,2-benzanthracene - pharmacokinetics Aflatoxin B1 - pharmacokinetics Amino Acid Sequence Animals Base Sequence Biological and medical sciences Biotransformation - genetics Carbolines - pharmacokinetics Cytochrome P-450 Enzyme System - genetics Cytochrome P-450 Enzyme System - metabolism cytotoxicity Drosophila melanogaster Drosophila melanogaster - enzymology Drosophila melanogaster - genetics Drosophila melanogaster - growth & development Enzyme Induction Escherichia coli - genetics Fundamental and applied biological sciences. Psychology gene conversion Gene Conversion - drug effects Gene Expression Regulation, Developmental Genes, Insect Genes, Synthetic Genes. Genome Humans insecticide resistance Introns Larva Microsomes - enzymology Molecular and cellular biology Molecular genetics Molecular Sequence Data Mutagenicity Tests Mutagens - pharmacokinetics NADPH-cytochrome P450 oxidoreductase NADPH-Ferrihemoprotein Reductase - genetics NADPH-Ferrihemoprotein Reductase - metabolism Organ Specificity Prodrugs - pharmacokinetics Recombinant Fusion Proteins - metabolism recombination test Saccharomyces cerevisiae Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism xenobiotic metabolism |
title | Metabolism of promutagens catalyzed by Drosophila melanogaster CYP6A2 enzyme in Saccharomyces cerevisiae |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A31%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolism%20of%20promutagens%20catalyzed%20by%20Drosophila%20melanogaster%20CYP6A2%20enzyme%20in%20Saccharomyces%20cerevisiae&rft.jtitle=Environmental%20and%20molecular%20mutagenesis&rft.au=Saner,%20Catherine&rft.date=1996&rft.volume=27&rft.issue=1&rft.spage=46&rft.epage=58&rft.pages=46-58&rft.issn=0893-6692&rft.eissn=1098-2280&rft.coden=EMMUEG&rft_id=info:doi/10.1002/(SICI)1098-2280(1996)27:1%3C46::AID-EM7%3E3.0.CO;2-C&rft_dat=%3Cproquest_pubme%3E17043042%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17043042&rft_id=info:pmid/8625948&rfr_iscdi=true |