Metabolism of promutagens catalyzed by Drosophila melanogaster CYP6A2 enzyme in Saccharomyces cerevisiae

The somatic mutation and recombination test (SMART) in Drosophila melanogaster allows screening of chemicals for genotoxicity in a multicellular organism. In order to correlate data obtained in the SMART with those from genotoxicity tests in rodents, it is important to learn more on the variety of d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental and molecular mutagenesis 1996, Vol.27 (1), p.46-58
Hauptverfasser: Saner, Catherine, Weibel, Beatrice, Würgler, Friedrich E., Sengstag, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 58
container_issue 1
container_start_page 46
container_title Environmental and molecular mutagenesis
container_volume 27
creator Saner, Catherine
Weibel, Beatrice
Würgler, Friedrich E.
Sengstag, Christian
description The somatic mutation and recombination test (SMART) in Drosophila melanogaster allows screening of chemicals for genotoxicity in a multicellular organism. In order to correlate data obtained in the SMART with those from genotoxicity tests in rodents, it is important to learn more on the variety of drug‐metabolizing enzymes present in this insect and to identify their substrate specificities. In this study we have concentrated on the phase I enzyme cytochrome P450 6A2, which is the first cytochrome P450 cloned from Drosophila. A genomic CYP6A2 DNA fragment and its corresponding cDNA were cloned and sequenced, revealing a previously unidentified intron with an inframe stop codon. This intron is invariantly present in an insecticide resistant [OR(R)] and a sensitive (flr3) strain. Developmental Northern analysis of CYP6A2 mRNA demonstrated a peak of expression in the third larval and pupal stage. CYP6A2 mRNA was found to be present in the insecticide‐resistant strain at higher levels than in the insecticide‐sensitive strain. Therefore, insecticide resistance might be correlated with enhanced CYP6A2 expression. The substrate specificity of CYP6A2 enzyme was investigated by coexpressing CYP6A2 cDNA with the cDNA for human NADPH‐cytochrome P450 reductase in the yeast Saccharomyces cerevisiae. The transformed strain activated the mycotoxin aflatoxin B1 to a product that induced gene conversion, scored at the trp5 locus. Two other compounds, 7, 12‐dimethylbenz‐[a]anthracene (DMBA) and 3‐amino‐1‐methyl‐5H‐pyrido[4,3‐b]indole (Trp‐P‐2), were metabolized in the transformed strain to cytotoxic products. © 1996 Wiley‐Liss, Inc.
doi_str_mv 10.1002/(SICI)1098-2280(1996)27:1<46::AID-EM7>3.0.CO;2-C
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_17043042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17043042</sourcerecordid><originalsourceid>FETCH-LOGICAL-i3767-d9be7a4e651e2edae5a850a95eaffb82290bc165a791e4a349f631c534a800513</originalsourceid><addsrcrecordid>eNo9kV2L00AUQIMoa139CUIeRHYfUud7MqsIJfthobstrCL6crlJb7azJk3NtGr215vQ0qdhuIfDzD1RlHI25oyJD2f302x6zplLEyFSdsadM-fCXvBPylxcTKaXydWt_SzHbJzNP4okexaNjvDzaMRSJxNjnHgZvQrhkTHOlRMn0UlqhHYqHUWrW9pi3lQ-1HFTxpu2qXdbfKB1iAvcYtU90TLOu_iybUKzWfkK45oqXDcPGLbUxtmPhZmImNZPXU2xX8f3WBQr7DVdQb2DWvrjg0d6Hb0osQr05nCeRt-ur75mX5LZ_GaaTWaJl9bYZOlysqjIaE6ClkgaU83QacKyzFMhHMsLbjRax0mhVK40khdaKkwZ01yeRu_33v4rv3cUtlD7UFDVv5maXQBumZJMiR58ewB3eU1L2LS-xraDw2r6-bvDHEOBVdniuvDhiEnGtbaqx-Z77K-vqDuOOYMhIAz9YEgCQxIY-oGwwEEZ6PNBnw8kMMjmICAbrr0x2Rt9v-F_RyO2v8BYaTV8v7uBNJst7q5_LoDL_0QZoZ0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17043042</pqid></control><display><type>article</type><title>Metabolism of promutagens catalyzed by Drosophila melanogaster CYP6A2 enzyme in Saccharomyces cerevisiae</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Saner, Catherine ; Weibel, Beatrice ; Würgler, Friedrich E. ; Sengstag, Christian</creator><creatorcontrib>Saner, Catherine ; Weibel, Beatrice ; Würgler, Friedrich E. ; Sengstag, Christian</creatorcontrib><description>The somatic mutation and recombination test (SMART) in Drosophila melanogaster allows screening of chemicals for genotoxicity in a multicellular organism. In order to correlate data obtained in the SMART with those from genotoxicity tests in rodents, it is important to learn more on the variety of drug‐metabolizing enzymes present in this insect and to identify their substrate specificities. In this study we have concentrated on the phase I enzyme cytochrome P450 6A2, which is the first cytochrome P450 cloned from Drosophila. A genomic CYP6A2 DNA fragment and its corresponding cDNA were cloned and sequenced, revealing a previously unidentified intron with an inframe stop codon. This intron is invariantly present in an insecticide resistant [OR(R)] and a sensitive (flr3) strain. Developmental Northern analysis of CYP6A2 mRNA demonstrated a peak of expression in the third larval and pupal stage. CYP6A2 mRNA was found to be present in the insecticide‐resistant strain at higher levels than in the insecticide‐sensitive strain. Therefore, insecticide resistance might be correlated with enhanced CYP6A2 expression. The substrate specificity of CYP6A2 enzyme was investigated by coexpressing CYP6A2 cDNA with the cDNA for human NADPH‐cytochrome P450 reductase in the yeast Saccharomyces cerevisiae. The transformed strain activated the mycotoxin aflatoxin B1 to a product that induced gene conversion, scored at the trp5 locus. Two other compounds, 7, 12‐dimethylbenz‐[a]anthracene (DMBA) and 3‐amino‐1‐methyl‐5H‐pyrido[4,3‐b]indole (Trp‐P‐2), were metabolized in the transformed strain to cytotoxic products. © 1996 Wiley‐Liss, Inc.</description><identifier>ISSN: 0893-6692</identifier><identifier>EISSN: 1098-2280</identifier><identifier>DOI: 10.1002/(SICI)1098-2280(1996)27:1&lt;46::AID-EM7&gt;3.0.CO;2-C</identifier><identifier>PMID: 8625948</identifier><identifier>CODEN: EMMUEG</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>9,10-Dimethyl-1,2-benzanthracene - pharmacokinetics ; Aflatoxin B1 - pharmacokinetics ; Amino Acid Sequence ; Animals ; Base Sequence ; Biological and medical sciences ; Biotransformation - genetics ; Carbolines - pharmacokinetics ; Cytochrome P-450 Enzyme System - genetics ; Cytochrome P-450 Enzyme System - metabolism ; cytotoxicity ; Drosophila melanogaster ; Drosophila melanogaster - enzymology ; Drosophila melanogaster - genetics ; Drosophila melanogaster - growth &amp; development ; Enzyme Induction ; Escherichia coli - genetics ; Fundamental and applied biological sciences. Psychology ; gene conversion ; Gene Conversion - drug effects ; Gene Expression Regulation, Developmental ; Genes, Insect ; Genes, Synthetic ; Genes. Genome ; Humans ; insecticide resistance ; Introns ; Larva ; Microsomes - enzymology ; Molecular and cellular biology ; Molecular genetics ; Molecular Sequence Data ; Mutagenicity Tests ; Mutagens - pharmacokinetics ; NADPH-cytochrome P450 oxidoreductase ; NADPH-Ferrihemoprotein Reductase - genetics ; NADPH-Ferrihemoprotein Reductase - metabolism ; Organ Specificity ; Prodrugs - pharmacokinetics ; Recombinant Fusion Proteins - metabolism ; recombination test ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; xenobiotic metabolism</subject><ispartof>Environmental and molecular mutagenesis, 1996, Vol.27 (1), p.46-58</ispartof><rights>Copyright © 1996 Wiley‐Liss, Inc.</rights><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F%28SICI%291098-2280%281996%2927%3A1%3C46%3A%3AAID-EM7%3E3.0.CO%3B2-C$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F%28SICI%291098-2280%281996%2927%3A1%3C46%3A%3AAID-EM7%3E3.0.CO%3B2-C$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,4022,27922,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3015574$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8625948$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Saner, Catherine</creatorcontrib><creatorcontrib>Weibel, Beatrice</creatorcontrib><creatorcontrib>Würgler, Friedrich E.</creatorcontrib><creatorcontrib>Sengstag, Christian</creatorcontrib><title>Metabolism of promutagens catalyzed by Drosophila melanogaster CYP6A2 enzyme in Saccharomyces cerevisiae</title><title>Environmental and molecular mutagenesis</title><addtitle>Environ. Mol. Mutagen</addtitle><description>The somatic mutation and recombination test (SMART) in Drosophila melanogaster allows screening of chemicals for genotoxicity in a multicellular organism. In order to correlate data obtained in the SMART with those from genotoxicity tests in rodents, it is important to learn more on the variety of drug‐metabolizing enzymes present in this insect and to identify their substrate specificities. In this study we have concentrated on the phase I enzyme cytochrome P450 6A2, which is the first cytochrome P450 cloned from Drosophila. A genomic CYP6A2 DNA fragment and its corresponding cDNA were cloned and sequenced, revealing a previously unidentified intron with an inframe stop codon. This intron is invariantly present in an insecticide resistant [OR(R)] and a sensitive (flr3) strain. Developmental Northern analysis of CYP6A2 mRNA demonstrated a peak of expression in the third larval and pupal stage. CYP6A2 mRNA was found to be present in the insecticide‐resistant strain at higher levels than in the insecticide‐sensitive strain. Therefore, insecticide resistance might be correlated with enhanced CYP6A2 expression. The substrate specificity of CYP6A2 enzyme was investigated by coexpressing CYP6A2 cDNA with the cDNA for human NADPH‐cytochrome P450 reductase in the yeast Saccharomyces cerevisiae. The transformed strain activated the mycotoxin aflatoxin B1 to a product that induced gene conversion, scored at the trp5 locus. Two other compounds, 7, 12‐dimethylbenz‐[a]anthracene (DMBA) and 3‐amino‐1‐methyl‐5H‐pyrido[4,3‐b]indole (Trp‐P‐2), were metabolized in the transformed strain to cytotoxic products. © 1996 Wiley‐Liss, Inc.</description><subject>9,10-Dimethyl-1,2-benzanthracene - pharmacokinetics</subject><subject>Aflatoxin B1 - pharmacokinetics</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>Biological and medical sciences</subject><subject>Biotransformation - genetics</subject><subject>Carbolines - pharmacokinetics</subject><subject>Cytochrome P-450 Enzyme System - genetics</subject><subject>Cytochrome P-450 Enzyme System - metabolism</subject><subject>cytotoxicity</subject><subject>Drosophila melanogaster</subject><subject>Drosophila melanogaster - enzymology</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila melanogaster - growth &amp; development</subject><subject>Enzyme Induction</subject><subject>Escherichia coli - genetics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>gene conversion</subject><subject>Gene Conversion - drug effects</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Genes, Insect</subject><subject>Genes, Synthetic</subject><subject>Genes. Genome</subject><subject>Humans</subject><subject>insecticide resistance</subject><subject>Introns</subject><subject>Larva</subject><subject>Microsomes - enzymology</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Molecular Sequence Data</subject><subject>Mutagenicity Tests</subject><subject>Mutagens - pharmacokinetics</subject><subject>NADPH-cytochrome P450 oxidoreductase</subject><subject>NADPH-Ferrihemoprotein Reductase - genetics</subject><subject>NADPH-Ferrihemoprotein Reductase - metabolism</subject><subject>Organ Specificity</subject><subject>Prodrugs - pharmacokinetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>recombination test</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>xenobiotic metabolism</subject><issn>0893-6692</issn><issn>1098-2280</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kV2L00AUQIMoa139CUIeRHYfUud7MqsIJfthobstrCL6crlJb7azJk3NtGr215vQ0qdhuIfDzD1RlHI25oyJD2f302x6zplLEyFSdsadM-fCXvBPylxcTKaXydWt_SzHbJzNP4okexaNjvDzaMRSJxNjnHgZvQrhkTHOlRMn0UlqhHYqHUWrW9pi3lQ-1HFTxpu2qXdbfKB1iAvcYtU90TLOu_iybUKzWfkK45oqXDcPGLbUxtmPhZmImNZPXU2xX8f3WBQr7DVdQb2DWvrjg0d6Hb0osQr05nCeRt-ur75mX5LZ_GaaTWaJl9bYZOlysqjIaE6ClkgaU83QacKyzFMhHMsLbjRax0mhVK40khdaKkwZ01yeRu_33v4rv3cUtlD7UFDVv5maXQBumZJMiR58ewB3eU1L2LS-xraDw2r6-bvDHEOBVdniuvDhiEnGtbaqx-Z77K-vqDuOOYMhIAz9YEgCQxIY-oGwwEEZ6PNBnw8kMMjmICAbrr0x2Rt9v-F_RyO2v8BYaTV8v7uBNJst7q5_LoDL_0QZoZ0</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>Saner, Catherine</creator><creator>Weibel, Beatrice</creator><creator>Würgler, Friedrich E.</creator><creator>Sengstag, Christian</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley-Liss</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7SS</scope><scope>7U7</scope><scope>C1K</scope><scope>M7N</scope></search><sort><creationdate>1996</creationdate><title>Metabolism of promutagens catalyzed by Drosophila melanogaster CYP6A2 enzyme in Saccharomyces cerevisiae</title><author>Saner, Catherine ; Weibel, Beatrice ; Würgler, Friedrich E. ; Sengstag, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i3767-d9be7a4e651e2edae5a850a95eaffb82290bc165a791e4a349f631c534a800513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>9,10-Dimethyl-1,2-benzanthracene - pharmacokinetics</topic><topic>Aflatoxin B1 - pharmacokinetics</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>Biological and medical sciences</topic><topic>Biotransformation - genetics</topic><topic>Carbolines - pharmacokinetics</topic><topic>Cytochrome P-450 Enzyme System - genetics</topic><topic>Cytochrome P-450 Enzyme System - metabolism</topic><topic>cytotoxicity</topic><topic>Drosophila melanogaster</topic><topic>Drosophila melanogaster - enzymology</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila melanogaster - growth &amp; development</topic><topic>Enzyme Induction</topic><topic>Escherichia coli - genetics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>gene conversion</topic><topic>Gene Conversion - drug effects</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Genes, Insect</topic><topic>Genes, Synthetic</topic><topic>Genes. Genome</topic><topic>Humans</topic><topic>insecticide resistance</topic><topic>Introns</topic><topic>Larva</topic><topic>Microsomes - enzymology</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Molecular Sequence Data</topic><topic>Mutagenicity Tests</topic><topic>Mutagens - pharmacokinetics</topic><topic>NADPH-cytochrome P450 oxidoreductase</topic><topic>NADPH-Ferrihemoprotein Reductase - genetics</topic><topic>NADPH-Ferrihemoprotein Reductase - metabolism</topic><topic>Organ Specificity</topic><topic>Prodrugs - pharmacokinetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>recombination test</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>xenobiotic metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saner, Catherine</creatorcontrib><creatorcontrib>Weibel, Beatrice</creatorcontrib><creatorcontrib>Würgler, Friedrich E.</creatorcontrib><creatorcontrib>Sengstag, Christian</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><jtitle>Environmental and molecular mutagenesis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saner, Catherine</au><au>Weibel, Beatrice</au><au>Würgler, Friedrich E.</au><au>Sengstag, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolism of promutagens catalyzed by Drosophila melanogaster CYP6A2 enzyme in Saccharomyces cerevisiae</atitle><jtitle>Environmental and molecular mutagenesis</jtitle><addtitle>Environ. Mol. Mutagen</addtitle><date>1996</date><risdate>1996</risdate><volume>27</volume><issue>1</issue><spage>46</spage><epage>58</epage><pages>46-58</pages><issn>0893-6692</issn><eissn>1098-2280</eissn><coden>EMMUEG</coden><abstract>The somatic mutation and recombination test (SMART) in Drosophila melanogaster allows screening of chemicals for genotoxicity in a multicellular organism. In order to correlate data obtained in the SMART with those from genotoxicity tests in rodents, it is important to learn more on the variety of drug‐metabolizing enzymes present in this insect and to identify their substrate specificities. In this study we have concentrated on the phase I enzyme cytochrome P450 6A2, which is the first cytochrome P450 cloned from Drosophila. A genomic CYP6A2 DNA fragment and its corresponding cDNA were cloned and sequenced, revealing a previously unidentified intron with an inframe stop codon. This intron is invariantly present in an insecticide resistant [OR(R)] and a sensitive (flr3) strain. Developmental Northern analysis of CYP6A2 mRNA demonstrated a peak of expression in the third larval and pupal stage. CYP6A2 mRNA was found to be present in the insecticide‐resistant strain at higher levels than in the insecticide‐sensitive strain. Therefore, insecticide resistance might be correlated with enhanced CYP6A2 expression. The substrate specificity of CYP6A2 enzyme was investigated by coexpressing CYP6A2 cDNA with the cDNA for human NADPH‐cytochrome P450 reductase in the yeast Saccharomyces cerevisiae. The transformed strain activated the mycotoxin aflatoxin B1 to a product that induced gene conversion, scored at the trp5 locus. Two other compounds, 7, 12‐dimethylbenz‐[a]anthracene (DMBA) and 3‐amino‐1‐methyl‐5H‐pyrido[4,3‐b]indole (Trp‐P‐2), were metabolized in the transformed strain to cytotoxic products. © 1996 Wiley‐Liss, Inc.</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>8625948</pmid><doi>10.1002/(SICI)1098-2280(1996)27:1&lt;46::AID-EM7&gt;3.0.CO;2-C</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0893-6692
ispartof Environmental and molecular mutagenesis, 1996, Vol.27 (1), p.46-58
issn 0893-6692
1098-2280
language eng
recordid cdi_proquest_miscellaneous_17043042
source MEDLINE; Wiley Online Library All Journals
subjects 9,10-Dimethyl-1,2-benzanthracene - pharmacokinetics
Aflatoxin B1 - pharmacokinetics
Amino Acid Sequence
Animals
Base Sequence
Biological and medical sciences
Biotransformation - genetics
Carbolines - pharmacokinetics
Cytochrome P-450 Enzyme System - genetics
Cytochrome P-450 Enzyme System - metabolism
cytotoxicity
Drosophila melanogaster
Drosophila melanogaster - enzymology
Drosophila melanogaster - genetics
Drosophila melanogaster - growth & development
Enzyme Induction
Escherichia coli - genetics
Fundamental and applied biological sciences. Psychology
gene conversion
Gene Conversion - drug effects
Gene Expression Regulation, Developmental
Genes, Insect
Genes, Synthetic
Genes. Genome
Humans
insecticide resistance
Introns
Larva
Microsomes - enzymology
Molecular and cellular biology
Molecular genetics
Molecular Sequence Data
Mutagenicity Tests
Mutagens - pharmacokinetics
NADPH-cytochrome P450 oxidoreductase
NADPH-Ferrihemoprotein Reductase - genetics
NADPH-Ferrihemoprotein Reductase - metabolism
Organ Specificity
Prodrugs - pharmacokinetics
Recombinant Fusion Proteins - metabolism
recombination test
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
xenobiotic metabolism
title Metabolism of promutagens catalyzed by Drosophila melanogaster CYP6A2 enzyme in Saccharomyces cerevisiae
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A31%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolism%20of%20promutagens%20catalyzed%20by%20Drosophila%20melanogaster%20CYP6A2%20enzyme%20in%20Saccharomyces%20cerevisiae&rft.jtitle=Environmental%20and%20molecular%20mutagenesis&rft.au=Saner,%20Catherine&rft.date=1996&rft.volume=27&rft.issue=1&rft.spage=46&rft.epage=58&rft.pages=46-58&rft.issn=0893-6692&rft.eissn=1098-2280&rft.coden=EMMUEG&rft_id=info:doi/10.1002/(SICI)1098-2280(1996)27:1%3C46::AID-EM7%3E3.0.CO;2-C&rft_dat=%3Cproquest_pubme%3E17043042%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17043042&rft_id=info:pmid/8625948&rfr_iscdi=true