Interfacial Charge Transfer Anisotropy in Polycrystalline Lead Iodide Perovskite Films
Solar cells based on organic–inorganic lead iodide perovskite (CH3NH3PbI3) exhibit remarkably high power conversion efficiency (PCE). One of the key issues in solution-processed films is that often the polycrystalline domain orientation is not well-defined, which makes it difficult to predict energy...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry letters 2015-04, Vol.6 (8), p.1396-1402 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1402 |
---|---|
container_issue | 8 |
container_start_page | 1396 |
container_title | The journal of physical chemistry letters |
container_volume | 6 |
creator | Yin, Jun Cortecchia, Daniele Krishna, Anurag Chen, Shi Mathews, Nripan Grimsdale, Andrew C Soci, Cesare |
description | Solar cells based on organic–inorganic lead iodide perovskite (CH3NH3PbI3) exhibit remarkably high power conversion efficiency (PCE). One of the key issues in solution-processed films is that often the polycrystalline domain orientation is not well-defined, which makes it difficult to predict energy alignment and charge transfer efficiency. Here we combine ab initio calculations and photoelectron spectroscopy to unravel the electronic structure and charge redistribution at the interface between different surfaces of CH3NH3PbI3 and typical organic hole acceptor Spiro-OMeTAD and electron acceptor PCBM. We find that both hole and electron interfacial transfer depend strongly on the CH3NH3PbI3 surface orientation: while the (001) and (110) surfaces tend to favor hole injection to Spiro-OMeTAD, the (100) surface facilitates electron transfer to PCBM due to surface delocalized charges and hole/electron accumulation at the CH3NH3PbI3/organic interfaces. Molecular dynamic simulations indicate that this is due to strong orbital interactions under thermal fluctuations at room temperature, suggesting the possibility to further improve charge separation and extraction in perovskite-based solar cells by controlling perovskite film crystallization and surface orientation. |
doi_str_mv | 10.1021/acs.jpclett.5b00431 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1703718164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1703718164</sourcerecordid><originalsourceid>FETCH-LOGICAL-a456t-9bba159f1110776cbff1987d9185659631872398f96ea7ef88ec10518b433983</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMotlY_gSA5emnNdP8kOZZitVCwh-J1ye5ONDXd1GRX2G9vtFU8eZpheG_mzY-Qa2ATYFO4U1WYbPeVxbadZCVjaQInZAgyFWMOIjv90w_IRQhbxnLJBD8ng2k-zRNIYUiel02LXqvKKEvnr8q_IN141QSNns4aE1zr3b6npqFrZ_vK96FV1poG6QpVTZeuNjXSNXr3Ed5Mi3Rh7C5ckjOtbMCrYx2RzeJ-M38cr54elvPZaqzSLG_HsiwVZFIDAOM8r0qtQQpey5g5z2TMKPg0kULLHBVHLQRWwDIQZZrEcTIit4e1e-_eOwxtsTOhQmtVg64LBXCWxP8hT6M0OUgr70LwqIu9Nzvl-wJY8cWziDyLI8_iyDO6bo4HunKH9a_nB2AU3B0E327X-Sa---_KT7gkg-E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1703718164</pqid></control><display><type>article</type><title>Interfacial Charge Transfer Anisotropy in Polycrystalline Lead Iodide Perovskite Films</title><source>ACS Publications</source><creator>Yin, Jun ; Cortecchia, Daniele ; Krishna, Anurag ; Chen, Shi ; Mathews, Nripan ; Grimsdale, Andrew C ; Soci, Cesare</creator><creatorcontrib>Yin, Jun ; Cortecchia, Daniele ; Krishna, Anurag ; Chen, Shi ; Mathews, Nripan ; Grimsdale, Andrew C ; Soci, Cesare</creatorcontrib><description>Solar cells based on organic–inorganic lead iodide perovskite (CH3NH3PbI3) exhibit remarkably high power conversion efficiency (PCE). One of the key issues in solution-processed films is that often the polycrystalline domain orientation is not well-defined, which makes it difficult to predict energy alignment and charge transfer efficiency. Here we combine ab initio calculations and photoelectron spectroscopy to unravel the electronic structure and charge redistribution at the interface between different surfaces of CH3NH3PbI3 and typical organic hole acceptor Spiro-OMeTAD and electron acceptor PCBM. We find that both hole and electron interfacial transfer depend strongly on the CH3NH3PbI3 surface orientation: while the (001) and (110) surfaces tend to favor hole injection to Spiro-OMeTAD, the (100) surface facilitates electron transfer to PCBM due to surface delocalized charges and hole/electron accumulation at the CH3NH3PbI3/organic interfaces. Molecular dynamic simulations indicate that this is due to strong orbital interactions under thermal fluctuations at room temperature, suggesting the possibility to further improve charge separation and extraction in perovskite-based solar cells by controlling perovskite film crystallization and surface orientation.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.5b00431</identifier><identifier>PMID: 26263141</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry letters, 2015-04, Vol.6 (8), p.1396-1402</ispartof><rights>Copyright © American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a456t-9bba159f1110776cbff1987d9185659631872398f96ea7ef88ec10518b433983</citedby><cites>FETCH-LOGICAL-a456t-9bba159f1110776cbff1987d9185659631872398f96ea7ef88ec10518b433983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.5b00431$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.5b00431$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26263141$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yin, Jun</creatorcontrib><creatorcontrib>Cortecchia, Daniele</creatorcontrib><creatorcontrib>Krishna, Anurag</creatorcontrib><creatorcontrib>Chen, Shi</creatorcontrib><creatorcontrib>Mathews, Nripan</creatorcontrib><creatorcontrib>Grimsdale, Andrew C</creatorcontrib><creatorcontrib>Soci, Cesare</creatorcontrib><title>Interfacial Charge Transfer Anisotropy in Polycrystalline Lead Iodide Perovskite Films</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>Solar cells based on organic–inorganic lead iodide perovskite (CH3NH3PbI3) exhibit remarkably high power conversion efficiency (PCE). One of the key issues in solution-processed films is that often the polycrystalline domain orientation is not well-defined, which makes it difficult to predict energy alignment and charge transfer efficiency. Here we combine ab initio calculations and photoelectron spectroscopy to unravel the electronic structure and charge redistribution at the interface between different surfaces of CH3NH3PbI3 and typical organic hole acceptor Spiro-OMeTAD and electron acceptor PCBM. We find that both hole and electron interfacial transfer depend strongly on the CH3NH3PbI3 surface orientation: while the (001) and (110) surfaces tend to favor hole injection to Spiro-OMeTAD, the (100) surface facilitates electron transfer to PCBM due to surface delocalized charges and hole/electron accumulation at the CH3NH3PbI3/organic interfaces. Molecular dynamic simulations indicate that this is due to strong orbital interactions under thermal fluctuations at room temperature, suggesting the possibility to further improve charge separation and extraction in perovskite-based solar cells by controlling perovskite film crystallization and surface orientation.</description><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMotlY_gSA5emnNdP8kOZZitVCwh-J1ye5ONDXd1GRX2G9vtFU8eZpheG_mzY-Qa2ATYFO4U1WYbPeVxbadZCVjaQInZAgyFWMOIjv90w_IRQhbxnLJBD8ng2k-zRNIYUiel02LXqvKKEvnr8q_IN141QSNns4aE1zr3b6npqFrZ_vK96FV1poG6QpVTZeuNjXSNXr3Ed5Mi3Rh7C5ckjOtbMCrYx2RzeJ-M38cr54elvPZaqzSLG_HsiwVZFIDAOM8r0qtQQpey5g5z2TMKPg0kULLHBVHLQRWwDIQZZrEcTIit4e1e-_eOwxtsTOhQmtVg64LBXCWxP8hT6M0OUgr70LwqIu9Nzvl-wJY8cWziDyLI8_iyDO6bo4HunKH9a_nB2AU3B0E327X-Sa---_KT7gkg-E</recordid><startdate>20150416</startdate><enddate>20150416</enddate><creator>Yin, Jun</creator><creator>Cortecchia, Daniele</creator><creator>Krishna, Anurag</creator><creator>Chen, Shi</creator><creator>Mathews, Nripan</creator><creator>Grimsdale, Andrew C</creator><creator>Soci, Cesare</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150416</creationdate><title>Interfacial Charge Transfer Anisotropy in Polycrystalline Lead Iodide Perovskite Films</title><author>Yin, Jun ; Cortecchia, Daniele ; Krishna, Anurag ; Chen, Shi ; Mathews, Nripan ; Grimsdale, Andrew C ; Soci, Cesare</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a456t-9bba159f1110776cbff1987d9185659631872398f96ea7ef88ec10518b433983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Jun</creatorcontrib><creatorcontrib>Cortecchia, Daniele</creatorcontrib><creatorcontrib>Krishna, Anurag</creatorcontrib><creatorcontrib>Chen, Shi</creatorcontrib><creatorcontrib>Mathews, Nripan</creatorcontrib><creatorcontrib>Grimsdale, Andrew C</creatorcontrib><creatorcontrib>Soci, Cesare</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Jun</au><au>Cortecchia, Daniele</au><au>Krishna, Anurag</au><au>Chen, Shi</au><au>Mathews, Nripan</au><au>Grimsdale, Andrew C</au><au>Soci, Cesare</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interfacial Charge Transfer Anisotropy in Polycrystalline Lead Iodide Perovskite Films</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2015-04-16</date><risdate>2015</risdate><volume>6</volume><issue>8</issue><spage>1396</spage><epage>1402</epage><pages>1396-1402</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Solar cells based on organic–inorganic lead iodide perovskite (CH3NH3PbI3) exhibit remarkably high power conversion efficiency (PCE). One of the key issues in solution-processed films is that often the polycrystalline domain orientation is not well-defined, which makes it difficult to predict energy alignment and charge transfer efficiency. Here we combine ab initio calculations and photoelectron spectroscopy to unravel the electronic structure and charge redistribution at the interface between different surfaces of CH3NH3PbI3 and typical organic hole acceptor Spiro-OMeTAD and electron acceptor PCBM. We find that both hole and electron interfacial transfer depend strongly on the CH3NH3PbI3 surface orientation: while the (001) and (110) surfaces tend to favor hole injection to Spiro-OMeTAD, the (100) surface facilitates electron transfer to PCBM due to surface delocalized charges and hole/electron accumulation at the CH3NH3PbI3/organic interfaces. Molecular dynamic simulations indicate that this is due to strong orbital interactions under thermal fluctuations at room temperature, suggesting the possibility to further improve charge separation and extraction in perovskite-based solar cells by controlling perovskite film crystallization and surface orientation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26263141</pmid><doi>10.1021/acs.jpclett.5b00431</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1948-7185 |
ispartof | The journal of physical chemistry letters, 2015-04, Vol.6 (8), p.1396-1402 |
issn | 1948-7185 1948-7185 |
language | eng |
recordid | cdi_proquest_miscellaneous_1703718164 |
source | ACS Publications |
title | Interfacial Charge Transfer Anisotropy in Polycrystalline Lead Iodide Perovskite Films |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T01%3A11%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interfacial%20Charge%20Transfer%20Anisotropy%20in%20Polycrystalline%20Lead%20Iodide%20Perovskite%20Films&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Yin,%20Jun&rft.date=2015-04-16&rft.volume=6&rft.issue=8&rft.spage=1396&rft.epage=1402&rft.pages=1396-1402&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.5b00431&rft_dat=%3Cproquest_cross%3E1703718164%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1703718164&rft_id=info:pmid/26263141&rfr_iscdi=true |