Interfacial Charge Transfer Anisotropy in Polycrystalline Lead Iodide Perovskite Films

Solar cells based on organic–inorganic lead iodide perovskite (CH3NH3PbI3) exhibit remarkably high power conversion efficiency (PCE). One of the key issues in solution-processed films is that often the polycrystalline domain orientation is not well-defined, which makes it difficult to predict energy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2015-04, Vol.6 (8), p.1396-1402
Hauptverfasser: Yin, Jun, Cortecchia, Daniele, Krishna, Anurag, Chen, Shi, Mathews, Nripan, Grimsdale, Andrew C, Soci, Cesare
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1402
container_issue 8
container_start_page 1396
container_title The journal of physical chemistry letters
container_volume 6
creator Yin, Jun
Cortecchia, Daniele
Krishna, Anurag
Chen, Shi
Mathews, Nripan
Grimsdale, Andrew C
Soci, Cesare
description Solar cells based on organic–inorganic lead iodide perovskite (CH3NH3PbI3) exhibit remarkably high power conversion efficiency (PCE). One of the key issues in solution-processed films is that often the polycrystalline domain orientation is not well-defined, which makes it difficult to predict energy alignment and charge transfer efficiency. Here we combine ab initio calculations and photoelectron spectroscopy to unravel the electronic structure and charge redistribution at the interface between different surfaces of CH3NH3PbI3 and typical organic hole acceptor Spiro-OMeTAD and electron acceptor PCBM. We find that both hole and electron interfacial transfer depend strongly on the CH3NH3PbI3 surface orientation: while the (001) and (110) surfaces tend to favor hole injection to Spiro-OMeTAD, the (100) surface facilitates electron transfer to PCBM due to surface delocalized charges and hole/electron accumulation at the CH3NH3PbI3/organic interfaces. Molecular dynamic simulations indicate that this is due to strong orbital interactions under thermal fluctuations at room temperature, suggesting the possibility to further improve charge separation and extraction in perovskite-based solar cells by controlling perovskite film crystallization and surface orientation.
doi_str_mv 10.1021/acs.jpclett.5b00431
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1703718164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1703718164</sourcerecordid><originalsourceid>FETCH-LOGICAL-a456t-9bba159f1110776cbff1987d9185659631872398f96ea7ef88ec10518b433983</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMotlY_gSA5emnNdP8kOZZitVCwh-J1ye5ONDXd1GRX2G9vtFU8eZpheG_mzY-Qa2ATYFO4U1WYbPeVxbadZCVjaQInZAgyFWMOIjv90w_IRQhbxnLJBD8ng2k-zRNIYUiel02LXqvKKEvnr8q_IN141QSNns4aE1zr3b6npqFrZ_vK96FV1poG6QpVTZeuNjXSNXr3Ed5Mi3Rh7C5ckjOtbMCrYx2RzeJ-M38cr54elvPZaqzSLG_HsiwVZFIDAOM8r0qtQQpey5g5z2TMKPg0kULLHBVHLQRWwDIQZZrEcTIit4e1e-_eOwxtsTOhQmtVg64LBXCWxP8hT6M0OUgr70LwqIu9Nzvl-wJY8cWziDyLI8_iyDO6bo4HunKH9a_nB2AU3B0E327X-Sa---_KT7gkg-E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1703718164</pqid></control><display><type>article</type><title>Interfacial Charge Transfer Anisotropy in Polycrystalline Lead Iodide Perovskite Films</title><source>ACS Publications</source><creator>Yin, Jun ; Cortecchia, Daniele ; Krishna, Anurag ; Chen, Shi ; Mathews, Nripan ; Grimsdale, Andrew C ; Soci, Cesare</creator><creatorcontrib>Yin, Jun ; Cortecchia, Daniele ; Krishna, Anurag ; Chen, Shi ; Mathews, Nripan ; Grimsdale, Andrew C ; Soci, Cesare</creatorcontrib><description>Solar cells based on organic–inorganic lead iodide perovskite (CH3NH3PbI3) exhibit remarkably high power conversion efficiency (PCE). One of the key issues in solution-processed films is that often the polycrystalline domain orientation is not well-defined, which makes it difficult to predict energy alignment and charge transfer efficiency. Here we combine ab initio calculations and photoelectron spectroscopy to unravel the electronic structure and charge redistribution at the interface between different surfaces of CH3NH3PbI3 and typical organic hole acceptor Spiro-OMeTAD and electron acceptor PCBM. We find that both hole and electron interfacial transfer depend strongly on the CH3NH3PbI3 surface orientation: while the (001) and (110) surfaces tend to favor hole injection to Spiro-OMeTAD, the (100) surface facilitates electron transfer to PCBM due to surface delocalized charges and hole/electron accumulation at the CH3NH3PbI3/organic interfaces. Molecular dynamic simulations indicate that this is due to strong orbital interactions under thermal fluctuations at room temperature, suggesting the possibility to further improve charge separation and extraction in perovskite-based solar cells by controlling perovskite film crystallization and surface orientation.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.5b00431</identifier><identifier>PMID: 26263141</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry letters, 2015-04, Vol.6 (8), p.1396-1402</ispartof><rights>Copyright © American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a456t-9bba159f1110776cbff1987d9185659631872398f96ea7ef88ec10518b433983</citedby><cites>FETCH-LOGICAL-a456t-9bba159f1110776cbff1987d9185659631872398f96ea7ef88ec10518b433983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.5b00431$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.5b00431$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26263141$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yin, Jun</creatorcontrib><creatorcontrib>Cortecchia, Daniele</creatorcontrib><creatorcontrib>Krishna, Anurag</creatorcontrib><creatorcontrib>Chen, Shi</creatorcontrib><creatorcontrib>Mathews, Nripan</creatorcontrib><creatorcontrib>Grimsdale, Andrew C</creatorcontrib><creatorcontrib>Soci, Cesare</creatorcontrib><title>Interfacial Charge Transfer Anisotropy in Polycrystalline Lead Iodide Perovskite Films</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>Solar cells based on organic–inorganic lead iodide perovskite (CH3NH3PbI3) exhibit remarkably high power conversion efficiency (PCE). One of the key issues in solution-processed films is that often the polycrystalline domain orientation is not well-defined, which makes it difficult to predict energy alignment and charge transfer efficiency. Here we combine ab initio calculations and photoelectron spectroscopy to unravel the electronic structure and charge redistribution at the interface between different surfaces of CH3NH3PbI3 and typical organic hole acceptor Spiro-OMeTAD and electron acceptor PCBM. We find that both hole and electron interfacial transfer depend strongly on the CH3NH3PbI3 surface orientation: while the (001) and (110) surfaces tend to favor hole injection to Spiro-OMeTAD, the (100) surface facilitates electron transfer to PCBM due to surface delocalized charges and hole/electron accumulation at the CH3NH3PbI3/organic interfaces. Molecular dynamic simulations indicate that this is due to strong orbital interactions under thermal fluctuations at room temperature, suggesting the possibility to further improve charge separation and extraction in perovskite-based solar cells by controlling perovskite film crystallization and surface orientation.</description><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMotlY_gSA5emnNdP8kOZZitVCwh-J1ye5ONDXd1GRX2G9vtFU8eZpheG_mzY-Qa2ATYFO4U1WYbPeVxbadZCVjaQInZAgyFWMOIjv90w_IRQhbxnLJBD8ng2k-zRNIYUiel02LXqvKKEvnr8q_IN141QSNns4aE1zr3b6npqFrZ_vK96FV1poG6QpVTZeuNjXSNXr3Ed5Mi3Rh7C5ckjOtbMCrYx2RzeJ-M38cr54elvPZaqzSLG_HsiwVZFIDAOM8r0qtQQpey5g5z2TMKPg0kULLHBVHLQRWwDIQZZrEcTIit4e1e-_eOwxtsTOhQmtVg64LBXCWxP8hT6M0OUgr70LwqIu9Nzvl-wJY8cWziDyLI8_iyDO6bo4HunKH9a_nB2AU3B0E327X-Sa---_KT7gkg-E</recordid><startdate>20150416</startdate><enddate>20150416</enddate><creator>Yin, Jun</creator><creator>Cortecchia, Daniele</creator><creator>Krishna, Anurag</creator><creator>Chen, Shi</creator><creator>Mathews, Nripan</creator><creator>Grimsdale, Andrew C</creator><creator>Soci, Cesare</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150416</creationdate><title>Interfacial Charge Transfer Anisotropy in Polycrystalline Lead Iodide Perovskite Films</title><author>Yin, Jun ; Cortecchia, Daniele ; Krishna, Anurag ; Chen, Shi ; Mathews, Nripan ; Grimsdale, Andrew C ; Soci, Cesare</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a456t-9bba159f1110776cbff1987d9185659631872398f96ea7ef88ec10518b433983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Jun</creatorcontrib><creatorcontrib>Cortecchia, Daniele</creatorcontrib><creatorcontrib>Krishna, Anurag</creatorcontrib><creatorcontrib>Chen, Shi</creatorcontrib><creatorcontrib>Mathews, Nripan</creatorcontrib><creatorcontrib>Grimsdale, Andrew C</creatorcontrib><creatorcontrib>Soci, Cesare</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Jun</au><au>Cortecchia, Daniele</au><au>Krishna, Anurag</au><au>Chen, Shi</au><au>Mathews, Nripan</au><au>Grimsdale, Andrew C</au><au>Soci, Cesare</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interfacial Charge Transfer Anisotropy in Polycrystalline Lead Iodide Perovskite Films</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2015-04-16</date><risdate>2015</risdate><volume>6</volume><issue>8</issue><spage>1396</spage><epage>1402</epage><pages>1396-1402</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Solar cells based on organic–inorganic lead iodide perovskite (CH3NH3PbI3) exhibit remarkably high power conversion efficiency (PCE). One of the key issues in solution-processed films is that often the polycrystalline domain orientation is not well-defined, which makes it difficult to predict energy alignment and charge transfer efficiency. Here we combine ab initio calculations and photoelectron spectroscopy to unravel the electronic structure and charge redistribution at the interface between different surfaces of CH3NH3PbI3 and typical organic hole acceptor Spiro-OMeTAD and electron acceptor PCBM. We find that both hole and electron interfacial transfer depend strongly on the CH3NH3PbI3 surface orientation: while the (001) and (110) surfaces tend to favor hole injection to Spiro-OMeTAD, the (100) surface facilitates electron transfer to PCBM due to surface delocalized charges and hole/electron accumulation at the CH3NH3PbI3/organic interfaces. Molecular dynamic simulations indicate that this is due to strong orbital interactions under thermal fluctuations at room temperature, suggesting the possibility to further improve charge separation and extraction in perovskite-based solar cells by controlling perovskite film crystallization and surface orientation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26263141</pmid><doi>10.1021/acs.jpclett.5b00431</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2015-04, Vol.6 (8), p.1396-1402
issn 1948-7185
1948-7185
language eng
recordid cdi_proquest_miscellaneous_1703718164
source ACS Publications
title Interfacial Charge Transfer Anisotropy in Polycrystalline Lead Iodide Perovskite Films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T01%3A11%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interfacial%20Charge%20Transfer%20Anisotropy%20in%20Polycrystalline%20Lead%20Iodide%20Perovskite%20Films&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Yin,%20Jun&rft.date=2015-04-16&rft.volume=6&rft.issue=8&rft.spage=1396&rft.epage=1402&rft.pages=1396-1402&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.5b00431&rft_dat=%3Cproquest_cross%3E1703718164%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1703718164&rft_id=info:pmid/26263141&rfr_iscdi=true