Markers of autophagy are adapted to hyperglycaemia in skeletal muscle in type 2 diabetes
Aims/hypothesis Autophagy is a catabolic process that maintains cellular homeostasis by degradation of protein aggregates and selective removal of damaged organelles, e.g. mitochondria (mitophagy). Insulin resistance in skeletal muscle has been linked to mitochondrial dysfunction and altered protein...
Gespeichert in:
Veröffentlicht in: | Diabetologia 2015-09, Vol.58 (9), p.2087-2095 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2095 |
---|---|
container_issue | 9 |
container_start_page | 2087 |
container_title | Diabetologia |
container_volume | 58 |
creator | Kruse, Rikke Vind, Birgitte F. Petersson, Stine J. Kristensen, Jonas M. Højlund, Kurt |
description | Aims/hypothesis
Autophagy is a catabolic process that maintains cellular homeostasis by degradation of protein aggregates and selective removal of damaged organelles, e.g. mitochondria (mitophagy). Insulin resistance in skeletal muscle has been linked to mitochondrial dysfunction and altered protein metabolism. Here, we investigated whether abnormalities in autophagy are present in human muscle in obesity and type 2 diabetes.
Methods
Using a case–control design, skeletal muscle biopsies obtained in the basal and insulin-stimulated states from patients with type 2 diabetes during both euglycaemia and hyperglycaemia, and from glucose-tolerant lean and obese individuals during euglycaemia, were used for analysis of mRNA levels, protein abundance and phosphorylation of autophagy-related proteins.
Results
Muscle transcript levels of autophagy-related genes (
ULK1
,
BECN1
,
PIK3C3
,
ATG5
,
ATG7
,
ATG12
,
GABARAPL1
,
MAP1LC3B
,
SQSTM1
,
TP53INP2
and
FOXO3A
[also known as
FOXO3
]), including some specific for mitophagy
(BNIP3
,
BNIP3L
and
MUL1)
, and protein abundance of autophagy-related gene (ATG)7 and Bcl-2/adenovirus E1B 19-kDa-interacting protein 3 (BNIP3), as well as content and phosphorylation of forkhead box O3A (FOXO3A) were similar among the groups. Insulin reduced lipidation of microtubule-associated protein light chain 3 (LC3)B-I to LC3B-II, a marker of autophagosome formation, with no effect on p62/sequestosome 1 (SQSTM1) content in muscle of lean and obese individuals. In diabetic patients, insulin action on LC3B was absent and p62/SQSTM1 content increased when studied under euglycaemia, whereas the responses of LC3B and p62/SQSTM1 to insulin were normalised during hyperglycaemia.
Conclusions/interpretation
Our results demonstrate that the levels of autophagy-related genes and proteins in muscle are normal in obesity and type 2 diabetes. This suggests that muscle autophagy in type 2 diabetes has adapted to hyperglycaemia, which may contribute to preserve muscle mass. |
doi_str_mv | 10.1007/s00125-015-3654-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1702657088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3769540411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c551t-982aec41f3abf426b146719193caab46b4fd04e84eb875786e333db2b3b2fdc13</originalsourceid><addsrcrecordid>eNp1kMFq3DAQhkVpaDabPkAvRdBLL05mJFnWHktImkBKLgnkJkb2eOPEXruSfdi3r80mpRRyGpj55p_hE-ILwhkCFOcJAFWeAeaZtrnJ4INYodEqA6PcR7Faxhk6-3gsTlJ6BgCdG_tJHCsLxiltV-LxF8UXjkn2taRp7Icn2u4lRZZU0TByJcdePu0Hjtt2XxJ3DclmJ9MLtzxSK7splS0vrXGGpJJVQ4FHTqfiqKY28efXuhYPV5f3F9fZ7d3Pm4sft1mZ5zhmG6eIS4O1plAbZQMaW-AGN7okCsYGU1dg2BkOrsgLZ1lrXQUVdFB1VaJei--H3CH2vydOo--aVHLb0o77KXksQNm8AOdm9Nt_6HM_xd383UKh0xuEJRAPVBn7lCLXfohNR3HvEfyi3R-0-1m7X7R7mHe-viZPoePq78ab5xlQByDNo92W4z-n3039A6lnjHY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1701839101</pqid></control><display><type>article</type><title>Markers of autophagy are adapted to hyperglycaemia in skeletal muscle in type 2 diabetes</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Kruse, Rikke ; Vind, Birgitte F. ; Petersson, Stine J. ; Kristensen, Jonas M. ; Højlund, Kurt</creator><creatorcontrib>Kruse, Rikke ; Vind, Birgitte F. ; Petersson, Stine J. ; Kristensen, Jonas M. ; Højlund, Kurt</creatorcontrib><description>Aims/hypothesis
Autophagy is a catabolic process that maintains cellular homeostasis by degradation of protein aggregates and selective removal of damaged organelles, e.g. mitochondria (mitophagy). Insulin resistance in skeletal muscle has been linked to mitochondrial dysfunction and altered protein metabolism. Here, we investigated whether abnormalities in autophagy are present in human muscle in obesity and type 2 diabetes.
Methods
Using a case–control design, skeletal muscle biopsies obtained in the basal and insulin-stimulated states from patients with type 2 diabetes during both euglycaemia and hyperglycaemia, and from glucose-tolerant lean and obese individuals during euglycaemia, were used for analysis of mRNA levels, protein abundance and phosphorylation of autophagy-related proteins.
Results
Muscle transcript levels of autophagy-related genes (
ULK1
,
BECN1
,
PIK3C3
,
ATG5
,
ATG7
,
ATG12
,
GABARAPL1
,
MAP1LC3B
,
SQSTM1
,
TP53INP2
and
FOXO3A
[also known as
FOXO3
]), including some specific for mitophagy
(BNIP3
,
BNIP3L
and
MUL1)
, and protein abundance of autophagy-related gene (ATG)7 and Bcl-2/adenovirus E1B 19-kDa-interacting protein 3 (BNIP3), as well as content and phosphorylation of forkhead box O3A (FOXO3A) were similar among the groups. Insulin reduced lipidation of microtubule-associated protein light chain 3 (LC3)B-I to LC3B-II, a marker of autophagosome formation, with no effect on p62/sequestosome 1 (SQSTM1) content in muscle of lean and obese individuals. In diabetic patients, insulin action on LC3B was absent and p62/SQSTM1 content increased when studied under euglycaemia, whereas the responses of LC3B and p62/SQSTM1 to insulin were normalised during hyperglycaemia.
Conclusions/interpretation
Our results demonstrate that the levels of autophagy-related genes and proteins in muscle are normal in obesity and type 2 diabetes. This suggests that muscle autophagy in type 2 diabetes has adapted to hyperglycaemia, which may contribute to preserve muscle mass.</description><identifier>ISSN: 0012-186X</identifier><identifier>EISSN: 1432-0428</identifier><identifier>DOI: 10.1007/s00125-015-3654-0</identifier><identifier>PMID: 26048236</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adenoviruses ; Apoptosis Regulatory Proteins - metabolism ; Autophagy ; Biopsy ; Case-Control Studies ; Diabetes ; Diabetes Mellitus, Type 2 - immunology ; Diabetes Mellitus, Type 2 - metabolism ; Female ; Forkhead Box Protein O3 ; Forkhead Transcription Factors - metabolism ; Genes ; Glucose ; Glucose Clamp Technique ; Glucose Tolerance Test ; Homeostasis ; Human Physiology ; Humans ; Hyperglycemia ; Hyperglycemia - immunology ; Hyperglycemia - metabolism ; Insulin Resistance ; Internal Medicine ; Kinases ; Male ; Medicine ; Medicine & Public Health ; Metabolic Diseases ; Metabolism ; Microtubule-Associated Proteins - metabolism ; Middle Aged ; Mitochondria ; Mitochondria - metabolism ; Muscle, Skeletal - immunology ; Muscle, Skeletal - metabolism ; Musculoskeletal system ; Obesity ; Obesity - immunology ; Phosphorylation ; Proteins ; RNA, Messenger - metabolism ; TOR Serine-Threonine Kinases - metabolism</subject><ispartof>Diabetologia, 2015-09, Vol.58 (9), p.2087-2095</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c551t-982aec41f3abf426b146719193caab46b4fd04e84eb875786e333db2b3b2fdc13</citedby><cites>FETCH-LOGICAL-c551t-982aec41f3abf426b146719193caab46b4fd04e84eb875786e333db2b3b2fdc13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00125-015-3654-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00125-015-3654-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26048236$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kruse, Rikke</creatorcontrib><creatorcontrib>Vind, Birgitte F.</creatorcontrib><creatorcontrib>Petersson, Stine J.</creatorcontrib><creatorcontrib>Kristensen, Jonas M.</creatorcontrib><creatorcontrib>Højlund, Kurt</creatorcontrib><title>Markers of autophagy are adapted to hyperglycaemia in skeletal muscle in type 2 diabetes</title><title>Diabetologia</title><addtitle>Diabetologia</addtitle><addtitle>Diabetologia</addtitle><description>Aims/hypothesis
Autophagy is a catabolic process that maintains cellular homeostasis by degradation of protein aggregates and selective removal of damaged organelles, e.g. mitochondria (mitophagy). Insulin resistance in skeletal muscle has been linked to mitochondrial dysfunction and altered protein metabolism. Here, we investigated whether abnormalities in autophagy are present in human muscle in obesity and type 2 diabetes.
Methods
Using a case–control design, skeletal muscle biopsies obtained in the basal and insulin-stimulated states from patients with type 2 diabetes during both euglycaemia and hyperglycaemia, and from glucose-tolerant lean and obese individuals during euglycaemia, were used for analysis of mRNA levels, protein abundance and phosphorylation of autophagy-related proteins.
Results
Muscle transcript levels of autophagy-related genes (
ULK1
,
BECN1
,
PIK3C3
,
ATG5
,
ATG7
,
ATG12
,
GABARAPL1
,
MAP1LC3B
,
SQSTM1
,
TP53INP2
and
FOXO3A
[also known as
FOXO3
]), including some specific for mitophagy
(BNIP3
,
BNIP3L
and
MUL1)
, and protein abundance of autophagy-related gene (ATG)7 and Bcl-2/adenovirus E1B 19-kDa-interacting protein 3 (BNIP3), as well as content and phosphorylation of forkhead box O3A (FOXO3A) were similar among the groups. Insulin reduced lipidation of microtubule-associated protein light chain 3 (LC3)B-I to LC3B-II, a marker of autophagosome formation, with no effect on p62/sequestosome 1 (SQSTM1) content in muscle of lean and obese individuals. In diabetic patients, insulin action on LC3B was absent and p62/SQSTM1 content increased when studied under euglycaemia, whereas the responses of LC3B and p62/SQSTM1 to insulin were normalised during hyperglycaemia.
Conclusions/interpretation
Our results demonstrate that the levels of autophagy-related genes and proteins in muscle are normal in obesity and type 2 diabetes. This suggests that muscle autophagy in type 2 diabetes has adapted to hyperglycaemia, which may contribute to preserve muscle mass.</description><subject>Adenoviruses</subject><subject>Apoptosis Regulatory Proteins - metabolism</subject><subject>Autophagy</subject><subject>Biopsy</subject><subject>Case-Control Studies</subject><subject>Diabetes</subject><subject>Diabetes Mellitus, Type 2 - immunology</subject><subject>Diabetes Mellitus, Type 2 - metabolism</subject><subject>Female</subject><subject>Forkhead Box Protein O3</subject><subject>Forkhead Transcription Factors - metabolism</subject><subject>Genes</subject><subject>Glucose</subject><subject>Glucose Clamp Technique</subject><subject>Glucose Tolerance Test</subject><subject>Homeostasis</subject><subject>Human Physiology</subject><subject>Humans</subject><subject>Hyperglycemia</subject><subject>Hyperglycemia - immunology</subject><subject>Hyperglycemia - metabolism</subject><subject>Insulin Resistance</subject><subject>Internal Medicine</subject><subject>Kinases</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Metabolic Diseases</subject><subject>Metabolism</subject><subject>Microtubule-Associated Proteins - metabolism</subject><subject>Middle Aged</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Muscle, Skeletal - immunology</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Musculoskeletal system</subject><subject>Obesity</subject><subject>Obesity - immunology</subject><subject>Phosphorylation</subject><subject>Proteins</subject><subject>RNA, Messenger - metabolism</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><issn>0012-186X</issn><issn>1432-0428</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kMFq3DAQhkVpaDabPkAvRdBLL05mJFnWHktImkBKLgnkJkb2eOPEXruSfdi3r80mpRRyGpj55p_hE-ILwhkCFOcJAFWeAeaZtrnJ4INYodEqA6PcR7Faxhk6-3gsTlJ6BgCdG_tJHCsLxiltV-LxF8UXjkn2taRp7Icn2u4lRZZU0TByJcdePu0Hjtt2XxJ3DclmJ9MLtzxSK7splS0vrXGGpJJVQ4FHTqfiqKY28efXuhYPV5f3F9fZ7d3Pm4sft1mZ5zhmG6eIS4O1plAbZQMaW-AGN7okCsYGU1dg2BkOrsgLZ1lrXQUVdFB1VaJei--H3CH2vydOo--aVHLb0o77KXksQNm8AOdm9Nt_6HM_xd383UKh0xuEJRAPVBn7lCLXfohNR3HvEfyi3R-0-1m7X7R7mHe-viZPoePq78ab5xlQByDNo92W4z-n3039A6lnjHY</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Kruse, Rikke</creator><creator>Vind, Birgitte F.</creator><creator>Petersson, Stine J.</creator><creator>Kristensen, Jonas M.</creator><creator>Højlund, Kurt</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20150901</creationdate><title>Markers of autophagy are adapted to hyperglycaemia in skeletal muscle in type 2 diabetes</title><author>Kruse, Rikke ; Vind, Birgitte F. ; Petersson, Stine J. ; Kristensen, Jonas M. ; Højlund, Kurt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c551t-982aec41f3abf426b146719193caab46b4fd04e84eb875786e333db2b3b2fdc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adenoviruses</topic><topic>Apoptosis Regulatory Proteins - metabolism</topic><topic>Autophagy</topic><topic>Biopsy</topic><topic>Case-Control Studies</topic><topic>Diabetes</topic><topic>Diabetes Mellitus, Type 2 - immunology</topic><topic>Diabetes Mellitus, Type 2 - metabolism</topic><topic>Female</topic><topic>Forkhead Box Protein O3</topic><topic>Forkhead Transcription Factors - metabolism</topic><topic>Genes</topic><topic>Glucose</topic><topic>Glucose Clamp Technique</topic><topic>Glucose Tolerance Test</topic><topic>Homeostasis</topic><topic>Human Physiology</topic><topic>Humans</topic><topic>Hyperglycemia</topic><topic>Hyperglycemia - immunology</topic><topic>Hyperglycemia - metabolism</topic><topic>Insulin Resistance</topic><topic>Internal Medicine</topic><topic>Kinases</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Metabolic Diseases</topic><topic>Metabolism</topic><topic>Microtubule-Associated Proteins - metabolism</topic><topic>Middle Aged</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Muscle, Skeletal - immunology</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Musculoskeletal system</topic><topic>Obesity</topic><topic>Obesity - immunology</topic><topic>Phosphorylation</topic><topic>Proteins</topic><topic>RNA, Messenger - metabolism</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kruse, Rikke</creatorcontrib><creatorcontrib>Vind, Birgitte F.</creatorcontrib><creatorcontrib>Petersson, Stine J.</creatorcontrib><creatorcontrib>Kristensen, Jonas M.</creatorcontrib><creatorcontrib>Højlund, Kurt</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Diabetologia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kruse, Rikke</au><au>Vind, Birgitte F.</au><au>Petersson, Stine J.</au><au>Kristensen, Jonas M.</au><au>Højlund, Kurt</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Markers of autophagy are adapted to hyperglycaemia in skeletal muscle in type 2 diabetes</atitle><jtitle>Diabetologia</jtitle><stitle>Diabetologia</stitle><addtitle>Diabetologia</addtitle><date>2015-09-01</date><risdate>2015</risdate><volume>58</volume><issue>9</issue><spage>2087</spage><epage>2095</epage><pages>2087-2095</pages><issn>0012-186X</issn><eissn>1432-0428</eissn><abstract>Aims/hypothesis
Autophagy is a catabolic process that maintains cellular homeostasis by degradation of protein aggregates and selective removal of damaged organelles, e.g. mitochondria (mitophagy). Insulin resistance in skeletal muscle has been linked to mitochondrial dysfunction and altered protein metabolism. Here, we investigated whether abnormalities in autophagy are present in human muscle in obesity and type 2 diabetes.
Methods
Using a case–control design, skeletal muscle biopsies obtained in the basal and insulin-stimulated states from patients with type 2 diabetes during both euglycaemia and hyperglycaemia, and from glucose-tolerant lean and obese individuals during euglycaemia, were used for analysis of mRNA levels, protein abundance and phosphorylation of autophagy-related proteins.
Results
Muscle transcript levels of autophagy-related genes (
ULK1
,
BECN1
,
PIK3C3
,
ATG5
,
ATG7
,
ATG12
,
GABARAPL1
,
MAP1LC3B
,
SQSTM1
,
TP53INP2
and
FOXO3A
[also known as
FOXO3
]), including some specific for mitophagy
(BNIP3
,
BNIP3L
and
MUL1)
, and protein abundance of autophagy-related gene (ATG)7 and Bcl-2/adenovirus E1B 19-kDa-interacting protein 3 (BNIP3), as well as content and phosphorylation of forkhead box O3A (FOXO3A) were similar among the groups. Insulin reduced lipidation of microtubule-associated protein light chain 3 (LC3)B-I to LC3B-II, a marker of autophagosome formation, with no effect on p62/sequestosome 1 (SQSTM1) content in muscle of lean and obese individuals. In diabetic patients, insulin action on LC3B was absent and p62/SQSTM1 content increased when studied under euglycaemia, whereas the responses of LC3B and p62/SQSTM1 to insulin were normalised during hyperglycaemia.
Conclusions/interpretation
Our results demonstrate that the levels of autophagy-related genes and proteins in muscle are normal in obesity and type 2 diabetes. This suggests that muscle autophagy in type 2 diabetes has adapted to hyperglycaemia, which may contribute to preserve muscle mass.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>26048236</pmid><doi>10.1007/s00125-015-3654-0</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-186X |
ispartof | Diabetologia, 2015-09, Vol.58 (9), p.2087-2095 |
issn | 0012-186X 1432-0428 |
language | eng |
recordid | cdi_proquest_miscellaneous_1702657088 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Adenoviruses Apoptosis Regulatory Proteins - metabolism Autophagy Biopsy Case-Control Studies Diabetes Diabetes Mellitus, Type 2 - immunology Diabetes Mellitus, Type 2 - metabolism Female Forkhead Box Protein O3 Forkhead Transcription Factors - metabolism Genes Glucose Glucose Clamp Technique Glucose Tolerance Test Homeostasis Human Physiology Humans Hyperglycemia Hyperglycemia - immunology Hyperglycemia - metabolism Insulin Resistance Internal Medicine Kinases Male Medicine Medicine & Public Health Metabolic Diseases Metabolism Microtubule-Associated Proteins - metabolism Middle Aged Mitochondria Mitochondria - metabolism Muscle, Skeletal - immunology Muscle, Skeletal - metabolism Musculoskeletal system Obesity Obesity - immunology Phosphorylation Proteins RNA, Messenger - metabolism TOR Serine-Threonine Kinases - metabolism |
title | Markers of autophagy are adapted to hyperglycaemia in skeletal muscle in type 2 diabetes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T19%3A42%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Markers%20of%20autophagy%20are%20adapted%20to%20hyperglycaemia%20in%20skeletal%20muscle%20in%20type%202%20diabetes&rft.jtitle=Diabetologia&rft.au=Kruse,%20Rikke&rft.date=2015-09-01&rft.volume=58&rft.issue=9&rft.spage=2087&rft.epage=2095&rft.pages=2087-2095&rft.issn=0012-186X&rft.eissn=1432-0428&rft_id=info:doi/10.1007/s00125-015-3654-0&rft_dat=%3Cproquest_cross%3E3769540411%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1701839101&rft_id=info:pmid/26048236&rfr_iscdi=true |