Substrate-modulated ADP/ATP-transporter dynamics revealed by NMR relaxation dispersion

NMR relaxation dispersion measurements reveal the conformational dynamics of the mitochondrial ADP/ATP carrier and show that the ADP substrate facilitates interconversion between the predominant cytosol-facing state and a sparsely populated excited state. The ADP/ATP carrier (AAC) transports ADP and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature structural & molecular biology 2015-08, Vol.22 (8), p.636-641
Hauptverfasser: Brüschweiler, Sven, Yang, Qin, Run, Changqing, Chou, James J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 641
container_issue 8
container_start_page 636
container_title Nature structural & molecular biology
container_volume 22
creator Brüschweiler, Sven
Yang, Qin
Run, Changqing
Chou, James J
description NMR relaxation dispersion measurements reveal the conformational dynamics of the mitochondrial ADP/ATP carrier and show that the ADP substrate facilitates interconversion between the predominant cytosol-facing state and a sparsely populated excited state. The ADP/ATP carrier (AAC) transports ADP and ATP across the inner mitochondrial membrane. Unlike most transporters, which have two-fold direct or inverted quasisymmetry, AAC has apparent three-fold rotational symmetry. Further, its transport rate is relatively fast for transporters that carry large solutes. Here, we study the yeast AAC carrier 3 by obtaining comprehensive NMR relaxation dispersion measurements, which provide residue-specific information on the protein's conformational exchange. Our data indicate that AAC is predominantly in the cytosol-facing open state and converts to a sparsely populated state in an asymmetric manner despite its three-fold structural symmetry. Binding of the substrate ADP substantially increases the rate of conformational exchange, whereas the inhibitor CATR slows the exchange. These results suggest that although the transporter catalyzes the translocation of substrate the substrate also facilitates interconversion between alternating states, and this interconversion may be relevant to the transport function.
doi_str_mv 10.1038/nsmb.3059
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1702091789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A425675443</galeid><sourcerecordid>A425675443</sourcerecordid><originalsourceid>FETCH-LOGICAL-c550t-4438440282fb4cc65484017ebf32f34c98e7217466d893eaf600bfd752219a593</originalsourceid><addsrcrecordid>eNptkU1v1DAQhq0KREvhwB9AkbhApWz9GdvH1QKlUmmrfnC1nGS8SpXYWztB3X-Po5ZCofLB4_Ezr2bmRegdwQuCmTr0aagXDAu9g_aI4KLUWokXj7Fmu-h1SjcYUyEke4V2aUUqqRTZQz8upzqN0Y5QDqGd-hy0xfLz-eHy6rzMeZ82IY4Qi3br7dA1qYjwE2yfqXpbnH6_yO_e3tmxC75ou7SBmHL4Br10tk_w9uHeR9dfv1ytvpUnZ0fHq-VJ2QiBx5JzpjjHVFFX86apBFccEwm1Y9Qx3mgFkhLJq6pVmoF1Fca1a6WglGgrNNtHH-91NzHcTpBGM3Spgb63HsKUDJGYYk2kmtEP_6A3YYo-dzdTRFBVKfGHWucZTeddyEtoZlGz5FRUUuSeM7V4hsqnhbyj4MF1Of-k4NOTgsyMcDeu7ZSSOb68eJZtYkgpgjOb2A02bg3BZvbbzH6b2e_Mvn8YaqoHaB_J3wZn4OAeSPnLryH-NfV_ar8AluywZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1701528685</pqid></control><display><type>article</type><title>Substrate-modulated ADP/ATP-transporter dynamics revealed by NMR relaxation dispersion</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Brüschweiler, Sven ; Yang, Qin ; Run, Changqing ; Chou, James J</creator><creatorcontrib>Brüschweiler, Sven ; Yang, Qin ; Run, Changqing ; Chou, James J</creatorcontrib><description>NMR relaxation dispersion measurements reveal the conformational dynamics of the mitochondrial ADP/ATP carrier and show that the ADP substrate facilitates interconversion between the predominant cytosol-facing state and a sparsely populated excited state. The ADP/ATP carrier (AAC) transports ADP and ATP across the inner mitochondrial membrane. Unlike most transporters, which have two-fold direct or inverted quasisymmetry, AAC has apparent three-fold rotational symmetry. Further, its transport rate is relatively fast for transporters that carry large solutes. Here, we study the yeast AAC carrier 3 by obtaining comprehensive NMR relaxation dispersion measurements, which provide residue-specific information on the protein's conformational exchange. Our data indicate that AAC is predominantly in the cytosol-facing open state and converts to a sparsely populated state in an asymmetric manner despite its three-fold structural symmetry. Binding of the substrate ADP substantially increases the rate of conformational exchange, whereas the inhibitor CATR slows the exchange. These results suggest that although the transporter catalyzes the translocation of substrate the substrate also facilitates interconversion between alternating states, and this interconversion may be relevant to the transport function.</description><identifier>ISSN: 1545-9993</identifier><identifier>EISSN: 1545-9985</identifier><identifier>DOI: 10.1038/nsmb.3059</identifier><identifier>PMID: 26167881</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>101/6 ; 631/535/878/1263 ; 631/57/2272/1590 ; Adenosine diphosphate ; Adenosine Diphosphate - chemistry ; Adenosine Diphosphate - metabolism ; Algorithms ; ATP ; Binding Sites ; Biochemistry ; Biological Microscopy ; Biological transport ; Kinetics ; Life Sciences ; Magnetic Resonance Spectroscopy - methods ; Membrane Biology ; Membrane proteins ; Membranes ; Mitochondrial ADP, ATP Translocases - chemistry ; Mitochondrial ADP, ATP Translocases - metabolism ; Models, Molecular ; NMR ; Nuclear magnetic resonance ; Physiological aspects ; Protein Binding ; Protein Conformation ; Protein Structure ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Proteins ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - metabolism ; Solutes ; Structure ; Studies ; Substrate Specificity ; Substrates ; Thermodynamics ; Translocation ; Yeasts</subject><ispartof>Nature structural &amp; molecular biology, 2015-08, Vol.22 (8), p.636-641</ispartof><rights>Springer Nature America, Inc. 2015</rights><rights>COPYRIGHT 2015 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Aug 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c550t-4438440282fb4cc65484017ebf32f34c98e7217466d893eaf600bfd752219a593</citedby><cites>FETCH-LOGICAL-c550t-4438440282fb4cc65484017ebf32f34c98e7217466d893eaf600bfd752219a593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nsmb.3059$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nsmb.3059$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26167881$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brüschweiler, Sven</creatorcontrib><creatorcontrib>Yang, Qin</creatorcontrib><creatorcontrib>Run, Changqing</creatorcontrib><creatorcontrib>Chou, James J</creatorcontrib><title>Substrate-modulated ADP/ATP-transporter dynamics revealed by NMR relaxation dispersion</title><title>Nature structural &amp; molecular biology</title><addtitle>Nat Struct Mol Biol</addtitle><addtitle>Nat Struct Mol Biol</addtitle><description>NMR relaxation dispersion measurements reveal the conformational dynamics of the mitochondrial ADP/ATP carrier and show that the ADP substrate facilitates interconversion between the predominant cytosol-facing state and a sparsely populated excited state. The ADP/ATP carrier (AAC) transports ADP and ATP across the inner mitochondrial membrane. Unlike most transporters, which have two-fold direct or inverted quasisymmetry, AAC has apparent three-fold rotational symmetry. Further, its transport rate is relatively fast for transporters that carry large solutes. Here, we study the yeast AAC carrier 3 by obtaining comprehensive NMR relaxation dispersion measurements, which provide residue-specific information on the protein's conformational exchange. Our data indicate that AAC is predominantly in the cytosol-facing open state and converts to a sparsely populated state in an asymmetric manner despite its three-fold structural symmetry. Binding of the substrate ADP substantially increases the rate of conformational exchange, whereas the inhibitor CATR slows the exchange. These results suggest that although the transporter catalyzes the translocation of substrate the substrate also facilitates interconversion between alternating states, and this interconversion may be relevant to the transport function.</description><subject>101/6</subject><subject>631/535/878/1263</subject><subject>631/57/2272/1590</subject><subject>Adenosine diphosphate</subject><subject>Adenosine Diphosphate - chemistry</subject><subject>Adenosine Diphosphate - metabolism</subject><subject>Algorithms</subject><subject>ATP</subject><subject>Binding Sites</subject><subject>Biochemistry</subject><subject>Biological Microscopy</subject><subject>Biological transport</subject><subject>Kinetics</subject><subject>Life Sciences</subject><subject>Magnetic Resonance Spectroscopy - methods</subject><subject>Membrane Biology</subject><subject>Membrane proteins</subject><subject>Membranes</subject><subject>Mitochondrial ADP, ATP Translocases - chemistry</subject><subject>Mitochondrial ADP, ATP Translocases - metabolism</subject><subject>Models, Molecular</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Physiological aspects</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein Structure</subject><subject>Protein Structure, Secondary</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Solutes</subject><subject>Structure</subject><subject>Studies</subject><subject>Substrate Specificity</subject><subject>Substrates</subject><subject>Thermodynamics</subject><subject>Translocation</subject><subject>Yeasts</subject><issn>1545-9993</issn><issn>1545-9985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkU1v1DAQhq0KREvhwB9AkbhApWz9GdvH1QKlUmmrfnC1nGS8SpXYWztB3X-Po5ZCofLB4_Ezr2bmRegdwQuCmTr0aagXDAu9g_aI4KLUWokXj7Fmu-h1SjcYUyEke4V2aUUqqRTZQz8upzqN0Y5QDqGd-hy0xfLz-eHy6rzMeZ82IY4Qi3br7dA1qYjwE2yfqXpbnH6_yO_e3tmxC75ou7SBmHL4Br10tk_w9uHeR9dfv1ytvpUnZ0fHq-VJ2QiBx5JzpjjHVFFX86apBFccEwm1Y9Qx3mgFkhLJq6pVmoF1Fca1a6WglGgrNNtHH-91NzHcTpBGM3Spgb63HsKUDJGYYk2kmtEP_6A3YYo-dzdTRFBVKfGHWucZTeddyEtoZlGz5FRUUuSeM7V4hsqnhbyj4MF1Of-k4NOTgsyMcDeu7ZSSOb68eJZtYkgpgjOb2A02bg3BZvbbzH6b2e_Mvn8YaqoHaB_J3wZn4OAeSPnLryH-NfV_ar8AluywZQ</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Brüschweiler, Sven</creator><creator>Yang, Qin</creator><creator>Run, Changqing</creator><creator>Chou, James J</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20150801</creationdate><title>Substrate-modulated ADP/ATP-transporter dynamics revealed by NMR relaxation dispersion</title><author>Brüschweiler, Sven ; Yang, Qin ; Run, Changqing ; Chou, James J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c550t-4438440282fb4cc65484017ebf32f34c98e7217466d893eaf600bfd752219a593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>101/6</topic><topic>631/535/878/1263</topic><topic>631/57/2272/1590</topic><topic>Adenosine diphosphate</topic><topic>Adenosine Diphosphate - chemistry</topic><topic>Adenosine Diphosphate - metabolism</topic><topic>Algorithms</topic><topic>ATP</topic><topic>Binding Sites</topic><topic>Biochemistry</topic><topic>Biological Microscopy</topic><topic>Biological transport</topic><topic>Kinetics</topic><topic>Life Sciences</topic><topic>Magnetic Resonance Spectroscopy - methods</topic><topic>Membrane Biology</topic><topic>Membrane proteins</topic><topic>Membranes</topic><topic>Mitochondrial ADP, ATP Translocases - chemistry</topic><topic>Mitochondrial ADP, ATP Translocases - metabolism</topic><topic>Models, Molecular</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Physiological aspects</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein Structure</topic><topic>Protein Structure, Secondary</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Solutes</topic><topic>Structure</topic><topic>Studies</topic><topic>Substrate Specificity</topic><topic>Substrates</topic><topic>Thermodynamics</topic><topic>Translocation</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brüschweiler, Sven</creatorcontrib><creatorcontrib>Yang, Qin</creatorcontrib><creatorcontrib>Run, Changqing</creatorcontrib><creatorcontrib>Chou, James J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature structural &amp; molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brüschweiler, Sven</au><au>Yang, Qin</au><au>Run, Changqing</au><au>Chou, James J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Substrate-modulated ADP/ATP-transporter dynamics revealed by NMR relaxation dispersion</atitle><jtitle>Nature structural &amp; molecular biology</jtitle><stitle>Nat Struct Mol Biol</stitle><addtitle>Nat Struct Mol Biol</addtitle><date>2015-08-01</date><risdate>2015</risdate><volume>22</volume><issue>8</issue><spage>636</spage><epage>641</epage><pages>636-641</pages><issn>1545-9993</issn><eissn>1545-9985</eissn><abstract>NMR relaxation dispersion measurements reveal the conformational dynamics of the mitochondrial ADP/ATP carrier and show that the ADP substrate facilitates interconversion between the predominant cytosol-facing state and a sparsely populated excited state. The ADP/ATP carrier (AAC) transports ADP and ATP across the inner mitochondrial membrane. Unlike most transporters, which have two-fold direct or inverted quasisymmetry, AAC has apparent three-fold rotational symmetry. Further, its transport rate is relatively fast for transporters that carry large solutes. Here, we study the yeast AAC carrier 3 by obtaining comprehensive NMR relaxation dispersion measurements, which provide residue-specific information on the protein's conformational exchange. Our data indicate that AAC is predominantly in the cytosol-facing open state and converts to a sparsely populated state in an asymmetric manner despite its three-fold structural symmetry. Binding of the substrate ADP substantially increases the rate of conformational exchange, whereas the inhibitor CATR slows the exchange. These results suggest that although the transporter catalyzes the translocation of substrate the substrate also facilitates interconversion between alternating states, and this interconversion may be relevant to the transport function.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>26167881</pmid><doi>10.1038/nsmb.3059</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-9993
ispartof Nature structural & molecular biology, 2015-08, Vol.22 (8), p.636-641
issn 1545-9993
1545-9985
language eng
recordid cdi_proquest_miscellaneous_1702091789
source MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 101/6
631/535/878/1263
631/57/2272/1590
Adenosine diphosphate
Adenosine Diphosphate - chemistry
Adenosine Diphosphate - metabolism
Algorithms
ATP
Binding Sites
Biochemistry
Biological Microscopy
Biological transport
Kinetics
Life Sciences
Magnetic Resonance Spectroscopy - methods
Membrane Biology
Membrane proteins
Membranes
Mitochondrial ADP, ATP Translocases - chemistry
Mitochondrial ADP, ATP Translocases - metabolism
Models, Molecular
NMR
Nuclear magnetic resonance
Physiological aspects
Protein Binding
Protein Conformation
Protein Structure
Protein Structure, Secondary
Protein Structure, Tertiary
Proteins
Saccharomyces cerevisiae Proteins - chemistry
Saccharomyces cerevisiae Proteins - metabolism
Solutes
Structure
Studies
Substrate Specificity
Substrates
Thermodynamics
Translocation
Yeasts
title Substrate-modulated ADP/ATP-transporter dynamics revealed by NMR relaxation dispersion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A02%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Substrate-modulated%20ADP/ATP-transporter%20dynamics%20revealed%20by%20NMR%20relaxation%20dispersion&rft.jtitle=Nature%20structural%20&%20molecular%20biology&rft.au=Br%C3%BCschweiler,%20Sven&rft.date=2015-08-01&rft.volume=22&rft.issue=8&rft.spage=636&rft.epage=641&rft.pages=636-641&rft.issn=1545-9993&rft.eissn=1545-9985&rft_id=info:doi/10.1038/nsmb.3059&rft_dat=%3Cgale_proqu%3EA425675443%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1701528685&rft_id=info:pmid/26167881&rft_galeid=A425675443&rfr_iscdi=true