Experimental and DFT Studies Explain Solvent Control of C–H Activation and Product Selectivity in the Rh(III)-Catalyzed Formation of Neutral and Cationic Heterocycles

A range of novel heterocyclic cations have been synthesized by the Rh­(III)-catalyzed oxidative C–N and C–C coupling of 1-phenylpyrazole, 2-phenylpyridine, and 2-vinylpyridine with alkynes (4-octyne and diphenylacetylene). The reactions proceed via initial C–H activation, alkyne insertion, and reduc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2015-08, Vol.137 (30), p.9659-9669
Hauptverfasser: Davies, David L, Ellul, Charles E, Macgregor, Stuart A, McMullin, Claire L, Singh, Kuldip
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9669
container_issue 30
container_start_page 9659
container_title Journal of the American Chemical Society
container_volume 137
creator Davies, David L
Ellul, Charles E
Macgregor, Stuart A
McMullin, Claire L
Singh, Kuldip
description A range of novel heterocyclic cations have been synthesized by the Rh­(III)-catalyzed oxidative C–N and C–C coupling of 1-phenylpyrazole, 2-phenylpyridine, and 2-vinylpyridine with alkynes (4-octyne and diphenylacetylene). The reactions proceed via initial C–H activation, alkyne insertion, and reductive coupling, and all three of these steps are sensitive to the substrates involved and the reaction conditions. Density functional theory (DFT) calculations show that C–H activation can proceed via a heteroatom-directed process that involves displacement of acetate by the neutral substrate to form charged intermediates. This step (which leads to cationic C–N coupled products) is therefore favored by more polar solvents. An alternative non-directed C–H activation is also possible that does not involve acetate displacement and so becomes favored in low polarity solvents, leading to C–C coupled products. Alkyne insertion is generally more favorable for diphenylacetylene over 4-octyne, but the reverse is true of the reductive coupling step. The diphenylacetylene moiety can also stabilize unsaturated seven-membered rhodacycle intermediates through extra interaction with one of the Ph substituents. With 1-phenylpyrazole this effect is sufficient to suppress the final C–N reductive coupling. A comparison of a series of seven-membered rhodacycles indicates the barrier to coupling is highly sensitive to the two groups involved and follows the trend C–N+ > C–N > C–C (i.e., involving the formation of cationic C–N, neutral C–N, and neutral C–C coupled products, respectively).
doi_str_mv 10.1021/jacs.5b04858
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1702088854</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1702088854</sourcerecordid><originalsourceid>FETCH-LOGICAL-a428t-c86dc0d562d9db7658932849af85560974a75bb1e05576a62c6f80945f0c93fb3</originalsourceid><addsrcrecordid>eNptkcFOGzEQhq2KqgTaG-fKR5BYsJ2113tEC2kiIUANPa-89qzYyFmnthcRTrxDX6LP1SepQ0J74WTZ8_3_zPhH6IiSM0oYPV8oHc54Q3LJ5Qc0opyRjFMm9tCIEMKyQorxPjoIYZGuOZP0E9pnglKeUzlCv6-eVuC7JfRRWax6gy8n93geB9NBwKloVdfjubOPicCV66N3FrsWV39efk3xhY7do4qd61-1d96ZQUc8BwubShfXOMnjA-DvD8ez2ewkq1RqtH4GgyfOL7fSZHcDQ_S7CarX107jKUTwTq-1hfAZfWyVDfBldx6iH5Or-2qaXd9-m1UX15lKu8VMS2E0MVwwU5qmEFyWYybzUrWSc0HKIlcFbxoKhPNCKMG0aCUpc94SXY7bZnyIjre-K-9-DhBiveyCBmtVD24INS0II1JKnif0dItq70Lw0Nar9JPKr2tK6k029SabepdNwr_unIdmCeYf_BbG_9Yb1cINvk-Lvu_1F-yrmZM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1702088854</pqid></control><display><type>article</type><title>Experimental and DFT Studies Explain Solvent Control of C–H Activation and Product Selectivity in the Rh(III)-Catalyzed Formation of Neutral and Cationic Heterocycles</title><source>MEDLINE</source><source>ACS Publications</source><creator>Davies, David L ; Ellul, Charles E ; Macgregor, Stuart A ; McMullin, Claire L ; Singh, Kuldip</creator><creatorcontrib>Davies, David L ; Ellul, Charles E ; Macgregor, Stuart A ; McMullin, Claire L ; Singh, Kuldip</creatorcontrib><description>A range of novel heterocyclic cations have been synthesized by the Rh­(III)-catalyzed oxidative C–N and C–C coupling of 1-phenylpyrazole, 2-phenylpyridine, and 2-vinylpyridine with alkynes (4-octyne and diphenylacetylene). The reactions proceed via initial C–H activation, alkyne insertion, and reductive coupling, and all three of these steps are sensitive to the substrates involved and the reaction conditions. Density functional theory (DFT) calculations show that C–H activation can proceed via a heteroatom-directed process that involves displacement of acetate by the neutral substrate to form charged intermediates. This step (which leads to cationic C–N coupled products) is therefore favored by more polar solvents. An alternative non-directed C–H activation is also possible that does not involve acetate displacement and so becomes favored in low polarity solvents, leading to C–C coupled products. Alkyne insertion is generally more favorable for diphenylacetylene over 4-octyne, but the reverse is true of the reductive coupling step. The diphenylacetylene moiety can also stabilize unsaturated seven-membered rhodacycle intermediates through extra interaction with one of the Ph substituents. With 1-phenylpyrazole this effect is sufficient to suppress the final C–N reductive coupling. A comparison of a series of seven-membered rhodacycles indicates the barrier to coupling is highly sensitive to the two groups involved and follows the trend C–N+ &gt; C–N &gt; C–C (i.e., involving the formation of cationic C–N, neutral C–N, and neutral C–C coupled products, respectively).</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.5b04858</identifier><identifier>PMID: 26115418</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Catalysis ; Cations - chemical synthesis ; Cations - chemistry ; Heterocyclic Compounds - chemical synthesis ; Heterocyclic Compounds - chemistry ; Molecular Structure ; Organometallic Compounds - chemistry ; Quantum Theory ; Rhodium - chemistry ; Solvents - chemistry</subject><ispartof>Journal of the American Chemical Society, 2015-08, Vol.137 (30), p.9659-9669</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a428t-c86dc0d562d9db7658932849af85560974a75bb1e05576a62c6f80945f0c93fb3</citedby><cites>FETCH-LOGICAL-a428t-c86dc0d562d9db7658932849af85560974a75bb1e05576a62c6f80945f0c93fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.5b04858$$EPDF$$P50$$Gacs$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.5b04858$$EHTML$$P50$$Gacs$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26115418$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Davies, David L</creatorcontrib><creatorcontrib>Ellul, Charles E</creatorcontrib><creatorcontrib>Macgregor, Stuart A</creatorcontrib><creatorcontrib>McMullin, Claire L</creatorcontrib><creatorcontrib>Singh, Kuldip</creatorcontrib><title>Experimental and DFT Studies Explain Solvent Control of C–H Activation and Product Selectivity in the Rh(III)-Catalyzed Formation of Neutral and Cationic Heterocycles</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>A range of novel heterocyclic cations have been synthesized by the Rh­(III)-catalyzed oxidative C–N and C–C coupling of 1-phenylpyrazole, 2-phenylpyridine, and 2-vinylpyridine with alkynes (4-octyne and diphenylacetylene). The reactions proceed via initial C–H activation, alkyne insertion, and reductive coupling, and all three of these steps are sensitive to the substrates involved and the reaction conditions. Density functional theory (DFT) calculations show that C–H activation can proceed via a heteroatom-directed process that involves displacement of acetate by the neutral substrate to form charged intermediates. This step (which leads to cationic C–N coupled products) is therefore favored by more polar solvents. An alternative non-directed C–H activation is also possible that does not involve acetate displacement and so becomes favored in low polarity solvents, leading to C–C coupled products. Alkyne insertion is generally more favorable for diphenylacetylene over 4-octyne, but the reverse is true of the reductive coupling step. The diphenylacetylene moiety can also stabilize unsaturated seven-membered rhodacycle intermediates through extra interaction with one of the Ph substituents. With 1-phenylpyrazole this effect is sufficient to suppress the final C–N reductive coupling. A comparison of a series of seven-membered rhodacycles indicates the barrier to coupling is highly sensitive to the two groups involved and follows the trend C–N+ &gt; C–N &gt; C–C (i.e., involving the formation of cationic C–N, neutral C–N, and neutral C–C coupled products, respectively).</description><subject>Catalysis</subject><subject>Cations - chemical synthesis</subject><subject>Cations - chemistry</subject><subject>Heterocyclic Compounds - chemical synthesis</subject><subject>Heterocyclic Compounds - chemistry</subject><subject>Molecular Structure</subject><subject>Organometallic Compounds - chemistry</subject><subject>Quantum Theory</subject><subject>Rhodium - chemistry</subject><subject>Solvents - chemistry</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><sourceid>EIF</sourceid><recordid>eNptkcFOGzEQhq2KqgTaG-fKR5BYsJ2113tEC2kiIUANPa-89qzYyFmnthcRTrxDX6LP1SepQ0J74WTZ8_3_zPhH6IiSM0oYPV8oHc54Q3LJ5Qc0opyRjFMm9tCIEMKyQorxPjoIYZGuOZP0E9pnglKeUzlCv6-eVuC7JfRRWax6gy8n93geB9NBwKloVdfjubOPicCV66N3FrsWV39efk3xhY7do4qd61-1d96ZQUc8BwubShfXOMnjA-DvD8ez2ewkq1RqtH4GgyfOL7fSZHcDQ_S7CarX107jKUTwTq-1hfAZfWyVDfBldx6iH5Or-2qaXd9-m1UX15lKu8VMS2E0MVwwU5qmEFyWYybzUrWSc0HKIlcFbxoKhPNCKMG0aCUpc94SXY7bZnyIjre-K-9-DhBiveyCBmtVD24INS0II1JKnif0dItq70Lw0Nar9JPKr2tK6k029SabepdNwr_unIdmCeYf_BbG_9Yb1cINvk-Lvu_1F-yrmZM</recordid><startdate>20150805</startdate><enddate>20150805</enddate><creator>Davies, David L</creator><creator>Ellul, Charles E</creator><creator>Macgregor, Stuart A</creator><creator>McMullin, Claire L</creator><creator>Singh, Kuldip</creator><general>American Chemical Society</general><scope>N~.</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150805</creationdate><title>Experimental and DFT Studies Explain Solvent Control of C–H Activation and Product Selectivity in the Rh(III)-Catalyzed Formation of Neutral and Cationic Heterocycles</title><author>Davies, David L ; Ellul, Charles E ; Macgregor, Stuart A ; McMullin, Claire L ; Singh, Kuldip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a428t-c86dc0d562d9db7658932849af85560974a75bb1e05576a62c6f80945f0c93fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Catalysis</topic><topic>Cations - chemical synthesis</topic><topic>Cations - chemistry</topic><topic>Heterocyclic Compounds - chemical synthesis</topic><topic>Heterocyclic Compounds - chemistry</topic><topic>Molecular Structure</topic><topic>Organometallic Compounds - chemistry</topic><topic>Quantum Theory</topic><topic>Rhodium - chemistry</topic><topic>Solvents - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Davies, David L</creatorcontrib><creatorcontrib>Ellul, Charles E</creatorcontrib><creatorcontrib>Macgregor, Stuart A</creatorcontrib><creatorcontrib>McMullin, Claire L</creatorcontrib><creatorcontrib>Singh, Kuldip</creatorcontrib><collection>American Chemical Society (ACS) Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Davies, David L</au><au>Ellul, Charles E</au><au>Macgregor, Stuart A</au><au>McMullin, Claire L</au><au>Singh, Kuldip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental and DFT Studies Explain Solvent Control of C–H Activation and Product Selectivity in the Rh(III)-Catalyzed Formation of Neutral and Cationic Heterocycles</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2015-08-05</date><risdate>2015</risdate><volume>137</volume><issue>30</issue><spage>9659</spage><epage>9669</epage><pages>9659-9669</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>A range of novel heterocyclic cations have been synthesized by the Rh­(III)-catalyzed oxidative C–N and C–C coupling of 1-phenylpyrazole, 2-phenylpyridine, and 2-vinylpyridine with alkynes (4-octyne and diphenylacetylene). The reactions proceed via initial C–H activation, alkyne insertion, and reductive coupling, and all three of these steps are sensitive to the substrates involved and the reaction conditions. Density functional theory (DFT) calculations show that C–H activation can proceed via a heteroatom-directed process that involves displacement of acetate by the neutral substrate to form charged intermediates. This step (which leads to cationic C–N coupled products) is therefore favored by more polar solvents. An alternative non-directed C–H activation is also possible that does not involve acetate displacement and so becomes favored in low polarity solvents, leading to C–C coupled products. Alkyne insertion is generally more favorable for diphenylacetylene over 4-octyne, but the reverse is true of the reductive coupling step. The diphenylacetylene moiety can also stabilize unsaturated seven-membered rhodacycle intermediates through extra interaction with one of the Ph substituents. With 1-phenylpyrazole this effect is sufficient to suppress the final C–N reductive coupling. A comparison of a series of seven-membered rhodacycles indicates the barrier to coupling is highly sensitive to the two groups involved and follows the trend C–N+ &gt; C–N &gt; C–C (i.e., involving the formation of cationic C–N, neutral C–N, and neutral C–C coupled products, respectively).</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26115418</pmid><doi>10.1021/jacs.5b04858</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2015-08, Vol.137 (30), p.9659-9669
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_1702088854
source MEDLINE; ACS Publications
subjects Catalysis
Cations - chemical synthesis
Cations - chemistry
Heterocyclic Compounds - chemical synthesis
Heterocyclic Compounds - chemistry
Molecular Structure
Organometallic Compounds - chemistry
Quantum Theory
Rhodium - chemistry
Solvents - chemistry
title Experimental and DFT Studies Explain Solvent Control of C–H Activation and Product Selectivity in the Rh(III)-Catalyzed Formation of Neutral and Cationic Heterocycles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T18%3A23%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20and%20DFT%20Studies%20Explain%20Solvent%20Control%20of%20C%E2%80%93H%20Activation%20and%20Product%20Selectivity%20in%20the%20Rh(III)-Catalyzed%20Formation%20of%20Neutral%20and%20Cationic%20Heterocycles&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Davies,%20David%20L&rft.date=2015-08-05&rft.volume=137&rft.issue=30&rft.spage=9659&rft.epage=9669&rft.pages=9659-9669&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.5b04858&rft_dat=%3Cproquest_cross%3E1702088854%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1702088854&rft_id=info:pmid/26115418&rfr_iscdi=true