Experimental and DFT Studies Explain Solvent Control of C–H Activation and Product Selectivity in the Rh(III)-Catalyzed Formation of Neutral and Cationic Heterocycles
A range of novel heterocyclic cations have been synthesized by the Rh(III)-catalyzed oxidative C–N and C–C coupling of 1-phenylpyrazole, 2-phenylpyridine, and 2-vinylpyridine with alkynes (4-octyne and diphenylacetylene). The reactions proceed via initial C–H activation, alkyne insertion, and reduc...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2015-08, Vol.137 (30), p.9659-9669 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9669 |
---|---|
container_issue | 30 |
container_start_page | 9659 |
container_title | Journal of the American Chemical Society |
container_volume | 137 |
creator | Davies, David L Ellul, Charles E Macgregor, Stuart A McMullin, Claire L Singh, Kuldip |
description | A range of novel heterocyclic cations have been synthesized by the Rh(III)-catalyzed oxidative C–N and C–C coupling of 1-phenylpyrazole, 2-phenylpyridine, and 2-vinylpyridine with alkynes (4-octyne and diphenylacetylene). The reactions proceed via initial C–H activation, alkyne insertion, and reductive coupling, and all three of these steps are sensitive to the substrates involved and the reaction conditions. Density functional theory (DFT) calculations show that C–H activation can proceed via a heteroatom-directed process that involves displacement of acetate by the neutral substrate to form charged intermediates. This step (which leads to cationic C–N coupled products) is therefore favored by more polar solvents. An alternative non-directed C–H activation is also possible that does not involve acetate displacement and so becomes favored in low polarity solvents, leading to C–C coupled products. Alkyne insertion is generally more favorable for diphenylacetylene over 4-octyne, but the reverse is true of the reductive coupling step. The diphenylacetylene moiety can also stabilize unsaturated seven-membered rhodacycle intermediates through extra interaction with one of the Ph substituents. With 1-phenylpyrazole this effect is sufficient to suppress the final C–N reductive coupling. A comparison of a series of seven-membered rhodacycles indicates the barrier to coupling is highly sensitive to the two groups involved and follows the trend C–N+ > C–N > C–C (i.e., involving the formation of cationic C–N, neutral C–N, and neutral C–C coupled products, respectively). |
doi_str_mv | 10.1021/jacs.5b04858 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1702088854</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1702088854</sourcerecordid><originalsourceid>FETCH-LOGICAL-a428t-c86dc0d562d9db7658932849af85560974a75bb1e05576a62c6f80945f0c93fb3</originalsourceid><addsrcrecordid>eNptkcFOGzEQhq2KqgTaG-fKR5BYsJ2113tEC2kiIUANPa-89qzYyFmnthcRTrxDX6LP1SepQ0J74WTZ8_3_zPhH6IiSM0oYPV8oHc54Q3LJ5Qc0opyRjFMm9tCIEMKyQorxPjoIYZGuOZP0E9pnglKeUzlCv6-eVuC7JfRRWax6gy8n93geB9NBwKloVdfjubOPicCV66N3FrsWV39efk3xhY7do4qd61-1d96ZQUc8BwubShfXOMnjA-DvD8ez2ewkq1RqtH4GgyfOL7fSZHcDQ_S7CarX107jKUTwTq-1hfAZfWyVDfBldx6iH5Or-2qaXd9-m1UX15lKu8VMS2E0MVwwU5qmEFyWYybzUrWSc0HKIlcFbxoKhPNCKMG0aCUpc94SXY7bZnyIjre-K-9-DhBiveyCBmtVD24INS0II1JKnif0dItq70Lw0Nar9JPKr2tK6k029SabepdNwr_unIdmCeYf_BbG_9Yb1cINvk-Lvu_1F-yrmZM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1702088854</pqid></control><display><type>article</type><title>Experimental and DFT Studies Explain Solvent Control of C–H Activation and Product Selectivity in the Rh(III)-Catalyzed Formation of Neutral and Cationic Heterocycles</title><source>MEDLINE</source><source>ACS Publications</source><creator>Davies, David L ; Ellul, Charles E ; Macgregor, Stuart A ; McMullin, Claire L ; Singh, Kuldip</creator><creatorcontrib>Davies, David L ; Ellul, Charles E ; Macgregor, Stuart A ; McMullin, Claire L ; Singh, Kuldip</creatorcontrib><description>A range of novel heterocyclic cations have been synthesized by the Rh(III)-catalyzed oxidative C–N and C–C coupling of 1-phenylpyrazole, 2-phenylpyridine, and 2-vinylpyridine with alkynes (4-octyne and diphenylacetylene). The reactions proceed via initial C–H activation, alkyne insertion, and reductive coupling, and all three of these steps are sensitive to the substrates involved and the reaction conditions. Density functional theory (DFT) calculations show that C–H activation can proceed via a heteroatom-directed process that involves displacement of acetate by the neutral substrate to form charged intermediates. This step (which leads to cationic C–N coupled products) is therefore favored by more polar solvents. An alternative non-directed C–H activation is also possible that does not involve acetate displacement and so becomes favored in low polarity solvents, leading to C–C coupled products. Alkyne insertion is generally more favorable for diphenylacetylene over 4-octyne, but the reverse is true of the reductive coupling step. The diphenylacetylene moiety can also stabilize unsaturated seven-membered rhodacycle intermediates through extra interaction with one of the Ph substituents. With 1-phenylpyrazole this effect is sufficient to suppress the final C–N reductive coupling. A comparison of a series of seven-membered rhodacycles indicates the barrier to coupling is highly sensitive to the two groups involved and follows the trend C–N+ > C–N > C–C (i.e., involving the formation of cationic C–N, neutral C–N, and neutral C–C coupled products, respectively).</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.5b04858</identifier><identifier>PMID: 26115418</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Catalysis ; Cations - chemical synthesis ; Cations - chemistry ; Heterocyclic Compounds - chemical synthesis ; Heterocyclic Compounds - chemistry ; Molecular Structure ; Organometallic Compounds - chemistry ; Quantum Theory ; Rhodium - chemistry ; Solvents - chemistry</subject><ispartof>Journal of the American Chemical Society, 2015-08, Vol.137 (30), p.9659-9669</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a428t-c86dc0d562d9db7658932849af85560974a75bb1e05576a62c6f80945f0c93fb3</citedby><cites>FETCH-LOGICAL-a428t-c86dc0d562d9db7658932849af85560974a75bb1e05576a62c6f80945f0c93fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.5b04858$$EPDF$$P50$$Gacs$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.5b04858$$EHTML$$P50$$Gacs$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26115418$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Davies, David L</creatorcontrib><creatorcontrib>Ellul, Charles E</creatorcontrib><creatorcontrib>Macgregor, Stuart A</creatorcontrib><creatorcontrib>McMullin, Claire L</creatorcontrib><creatorcontrib>Singh, Kuldip</creatorcontrib><title>Experimental and DFT Studies Explain Solvent Control of C–H Activation and Product Selectivity in the Rh(III)-Catalyzed Formation of Neutral and Cationic Heterocycles</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>A range of novel heterocyclic cations have been synthesized by the Rh(III)-catalyzed oxidative C–N and C–C coupling of 1-phenylpyrazole, 2-phenylpyridine, and 2-vinylpyridine with alkynes (4-octyne and diphenylacetylene). The reactions proceed via initial C–H activation, alkyne insertion, and reductive coupling, and all three of these steps are sensitive to the substrates involved and the reaction conditions. Density functional theory (DFT) calculations show that C–H activation can proceed via a heteroatom-directed process that involves displacement of acetate by the neutral substrate to form charged intermediates. This step (which leads to cationic C–N coupled products) is therefore favored by more polar solvents. An alternative non-directed C–H activation is also possible that does not involve acetate displacement and so becomes favored in low polarity solvents, leading to C–C coupled products. Alkyne insertion is generally more favorable for diphenylacetylene over 4-octyne, but the reverse is true of the reductive coupling step. The diphenylacetylene moiety can also stabilize unsaturated seven-membered rhodacycle intermediates through extra interaction with one of the Ph substituents. With 1-phenylpyrazole this effect is sufficient to suppress the final C–N reductive coupling. A comparison of a series of seven-membered rhodacycles indicates the barrier to coupling is highly sensitive to the two groups involved and follows the trend C–N+ > C–N > C–C (i.e., involving the formation of cationic C–N, neutral C–N, and neutral C–C coupled products, respectively).</description><subject>Catalysis</subject><subject>Cations - chemical synthesis</subject><subject>Cations - chemistry</subject><subject>Heterocyclic Compounds - chemical synthesis</subject><subject>Heterocyclic Compounds - chemistry</subject><subject>Molecular Structure</subject><subject>Organometallic Compounds - chemistry</subject><subject>Quantum Theory</subject><subject>Rhodium - chemistry</subject><subject>Solvents - chemistry</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><sourceid>EIF</sourceid><recordid>eNptkcFOGzEQhq2KqgTaG-fKR5BYsJ2113tEC2kiIUANPa-89qzYyFmnthcRTrxDX6LP1SepQ0J74WTZ8_3_zPhH6IiSM0oYPV8oHc54Q3LJ5Qc0opyRjFMm9tCIEMKyQorxPjoIYZGuOZP0E9pnglKeUzlCv6-eVuC7JfRRWax6gy8n93geB9NBwKloVdfjubOPicCV66N3FrsWV39efk3xhY7do4qd61-1d96ZQUc8BwubShfXOMnjA-DvD8ez2ewkq1RqtH4GgyfOL7fSZHcDQ_S7CarX107jKUTwTq-1hfAZfWyVDfBldx6iH5Or-2qaXd9-m1UX15lKu8VMS2E0MVwwU5qmEFyWYybzUrWSc0HKIlcFbxoKhPNCKMG0aCUpc94SXY7bZnyIjre-K-9-DhBiveyCBmtVD24INS0II1JKnif0dItq70Lw0Nar9JPKr2tK6k029SabepdNwr_unIdmCeYf_BbG_9Yb1cINvk-Lvu_1F-yrmZM</recordid><startdate>20150805</startdate><enddate>20150805</enddate><creator>Davies, David L</creator><creator>Ellul, Charles E</creator><creator>Macgregor, Stuart A</creator><creator>McMullin, Claire L</creator><creator>Singh, Kuldip</creator><general>American Chemical Society</general><scope>N~.</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150805</creationdate><title>Experimental and DFT Studies Explain Solvent Control of C–H Activation and Product Selectivity in the Rh(III)-Catalyzed Formation of Neutral and Cationic Heterocycles</title><author>Davies, David L ; Ellul, Charles E ; Macgregor, Stuart A ; McMullin, Claire L ; Singh, Kuldip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a428t-c86dc0d562d9db7658932849af85560974a75bb1e05576a62c6f80945f0c93fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Catalysis</topic><topic>Cations - chemical synthesis</topic><topic>Cations - chemistry</topic><topic>Heterocyclic Compounds - chemical synthesis</topic><topic>Heterocyclic Compounds - chemistry</topic><topic>Molecular Structure</topic><topic>Organometallic Compounds - chemistry</topic><topic>Quantum Theory</topic><topic>Rhodium - chemistry</topic><topic>Solvents - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Davies, David L</creatorcontrib><creatorcontrib>Ellul, Charles E</creatorcontrib><creatorcontrib>Macgregor, Stuart A</creatorcontrib><creatorcontrib>McMullin, Claire L</creatorcontrib><creatorcontrib>Singh, Kuldip</creatorcontrib><collection>American Chemical Society (ACS) Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Davies, David L</au><au>Ellul, Charles E</au><au>Macgregor, Stuart A</au><au>McMullin, Claire L</au><au>Singh, Kuldip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental and DFT Studies Explain Solvent Control of C–H Activation and Product Selectivity in the Rh(III)-Catalyzed Formation of Neutral and Cationic Heterocycles</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2015-08-05</date><risdate>2015</risdate><volume>137</volume><issue>30</issue><spage>9659</spage><epage>9669</epage><pages>9659-9669</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>A range of novel heterocyclic cations have been synthesized by the Rh(III)-catalyzed oxidative C–N and C–C coupling of 1-phenylpyrazole, 2-phenylpyridine, and 2-vinylpyridine with alkynes (4-octyne and diphenylacetylene). The reactions proceed via initial C–H activation, alkyne insertion, and reductive coupling, and all three of these steps are sensitive to the substrates involved and the reaction conditions. Density functional theory (DFT) calculations show that C–H activation can proceed via a heteroatom-directed process that involves displacement of acetate by the neutral substrate to form charged intermediates. This step (which leads to cationic C–N coupled products) is therefore favored by more polar solvents. An alternative non-directed C–H activation is also possible that does not involve acetate displacement and so becomes favored in low polarity solvents, leading to C–C coupled products. Alkyne insertion is generally more favorable for diphenylacetylene over 4-octyne, but the reverse is true of the reductive coupling step. The diphenylacetylene moiety can also stabilize unsaturated seven-membered rhodacycle intermediates through extra interaction with one of the Ph substituents. With 1-phenylpyrazole this effect is sufficient to suppress the final C–N reductive coupling. A comparison of a series of seven-membered rhodacycles indicates the barrier to coupling is highly sensitive to the two groups involved and follows the trend C–N+ > C–N > C–C (i.e., involving the formation of cationic C–N, neutral C–N, and neutral C–C coupled products, respectively).</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26115418</pmid><doi>10.1021/jacs.5b04858</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2015-08, Vol.137 (30), p.9659-9669 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_proquest_miscellaneous_1702088854 |
source | MEDLINE; ACS Publications |
subjects | Catalysis Cations - chemical synthesis Cations - chemistry Heterocyclic Compounds - chemical synthesis Heterocyclic Compounds - chemistry Molecular Structure Organometallic Compounds - chemistry Quantum Theory Rhodium - chemistry Solvents - chemistry |
title | Experimental and DFT Studies Explain Solvent Control of C–H Activation and Product Selectivity in the Rh(III)-Catalyzed Formation of Neutral and Cationic Heterocycles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T18%3A23%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20and%20DFT%20Studies%20Explain%20Solvent%20Control%20of%20C%E2%80%93H%20Activation%20and%20Product%20Selectivity%20in%20the%20Rh(III)-Catalyzed%20Formation%20of%20Neutral%20and%20Cationic%20Heterocycles&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Davies,%20David%20L&rft.date=2015-08-05&rft.volume=137&rft.issue=30&rft.spage=9659&rft.epage=9669&rft.pages=9659-9669&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.5b04858&rft_dat=%3Cproquest_cross%3E1702088854%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1702088854&rft_id=info:pmid/26115418&rfr_iscdi=true |