Infant Maturity at Birth Reveals Minor Differences in the Maternal Milk Metabolome in the First Month of Lactation
Human milk is the gold standard of nutrition for infants, providing both protective and essential nutrients. Although much is known about milk from mothers giving birth to term infants, less is known about milk from mothers giving birth to premature infants. In addition, little is known about the co...
Gespeichert in:
Veröffentlicht in: | The Journal of nutrition 2015-08, Vol.145 (8), p.1698-1708 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1708 |
---|---|
container_issue | 8 |
container_start_page | 1698 |
container_title | The Journal of nutrition |
container_volume | 145 |
creator | Spevacek, Ann R Smilowitz, Jennifer T Chin, Elizabeth L Underwood, Mark A German, J Bruce Slupsky, Carolyn M |
description | Human milk is the gold standard of nutrition for infants, providing both protective and essential nutrients. Although much is known about milk from mothers giving birth to term infants, less is known about milk from mothers giving birth to premature infants. In addition, little is known about the composition and diversity of small molecules in these milks and how they change over the first month of lactation.
The objective was to understand how milk metabolites vary over the first month of lactation in mothers giving birth to term and preterm infants.
(1)H nuclear magnetic resonance (NMR) metabolomics was used to characterize metabolites that were present in micromolar to molar concentrations in colostrum (day 0-5 postpartum), transition milk (day 14), and mature milk (day 28) from mothers who delivered term (n = 15) and preterm (n = 13) infants. Principal components analysis, linear mixed-effects models (LMMs), and linear models (LMs) were used to explore the relation between infant maturity and the postpartum day of collection of milk samples.
By using a standard NMR metabolite library, 69 metabolites were identified in the milks, including 15 sugars, 23 amino acids and derivatives, 11 energy-related metabolites, 10 fatty acid-associated metabolites, 3 nucleotides and derivatives, 2 vitamins, and 5 bacteria-associated metabolites. Many metabolite concentrations followed a similar progression over time in both term and preterm milks, with more biological variation in metabolite concentrations in preterm milk. However, although lacto-N-neotetraose (LMM, P = 4.0 × 10(-5)) and lysine (LM, P = 1.5 × 10(-4)) significantly decreased in concentration in term milk over time, they did not significantly change in preterm milk.
Overall, the metabolic profile of human milk is dynamic throughout the first month of lactation, with more variability in preterm than in term milk and subtle differences in some metabolite concentrations. This trial was registered at clinicaltrials.gov as NCT01841268. |
doi_str_mv | 10.3945/jn.115.210252 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701895593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1701895593</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-c19944231d76f2546c6fa1f53d47431d018e365ceb2901fdf85e4f57b7c521f03</originalsourceid><addsrcrecordid>eNpVkUtPWzEQRi1UBOGx7Lbyspubevy6uZtKLYUWKRESgrXlOOPG6Y1NbQeJf1-jACorSzNnjkfzEfIR2FQMUn3ZxCmAmnJgXPEDMgElodPA2AcyYYzzToDWx-SklA1jDOQwOyLHXDMJulcTkq-jt7HSha27HOoTtZV-D7mu6S0-oh0LXYSYMv0RvMeM0WGhIdK6xucRzNGOjRj_0AVWu0xj2uJr_yrk0sQpNlnydG5dtTWkeEYOfRPj-ct7Su6vLu8ufnXzm5_XF9_mnZNK1M7BMEjJBax67bmS2mlvwSuxkr1sVQYzFFo5XPKBgV_5mULpVb_sneLgmTglX_feh91yiyuHsWY7mocctjY_mWSDed-JYW1-p0cjVbuN1k3w-UWQ098dlmq2oTgcRxsx7YqBvu0wKDWIhnZ71OVUSkb_9g0w85yT2UTTcjL7nBr_6f_d3ujXYMQ_yICPBw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1701895593</pqid></control><display><type>article</type><title>Infant Maturity at Birth Reveals Minor Differences in the Maternal Milk Metabolome in the First Month of Lactation</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Spevacek, Ann R ; Smilowitz, Jennifer T ; Chin, Elizabeth L ; Underwood, Mark A ; German, J Bruce ; Slupsky, Carolyn M</creator><creatorcontrib>Spevacek, Ann R ; Smilowitz, Jennifer T ; Chin, Elizabeth L ; Underwood, Mark A ; German, J Bruce ; Slupsky, Carolyn M</creatorcontrib><description>Human milk is the gold standard of nutrition for infants, providing both protective and essential nutrients. Although much is known about milk from mothers giving birth to term infants, less is known about milk from mothers giving birth to premature infants. In addition, little is known about the composition and diversity of small molecules in these milks and how they change over the first month of lactation.
The objective was to understand how milk metabolites vary over the first month of lactation in mothers giving birth to term and preterm infants.
(1)H nuclear magnetic resonance (NMR) metabolomics was used to characterize metabolites that were present in micromolar to molar concentrations in colostrum (day 0-5 postpartum), transition milk (day 14), and mature milk (day 28) from mothers who delivered term (n = 15) and preterm (n = 13) infants. Principal components analysis, linear mixed-effects models (LMMs), and linear models (LMs) were used to explore the relation between infant maturity and the postpartum day of collection of milk samples.
By using a standard NMR metabolite library, 69 metabolites were identified in the milks, including 15 sugars, 23 amino acids and derivatives, 11 energy-related metabolites, 10 fatty acid-associated metabolites, 3 nucleotides and derivatives, 2 vitamins, and 5 bacteria-associated metabolites. Many metabolite concentrations followed a similar progression over time in both term and preterm milks, with more biological variation in metabolite concentrations in preterm milk. However, although lacto-N-neotetraose (LMM, P = 4.0 × 10(-5)) and lysine (LM, P = 1.5 × 10(-4)) significantly decreased in concentration in term milk over time, they did not significantly change in preterm milk.
Overall, the metabolic profile of human milk is dynamic throughout the first month of lactation, with more variability in preterm than in term milk and subtle differences in some metabolite concentrations. This trial was registered at clinicaltrials.gov as NCT01841268.</description><identifier>ISSN: 0022-3166</identifier><identifier>EISSN: 1541-6100</identifier><identifier>DOI: 10.3945/jn.115.210252</identifier><identifier>PMID: 26041675</identifier><language>eng</language><publisher>United States: American Society for Nutrition</publisher><subject>Adult ; Carbohydrate Metabolism ; Carbohydrates - chemistry ; Colostrum - chemistry ; Female ; Genomics, Proteomics, and Metabolomics ; Humans ; Infant, Newborn ; Infant, Premature ; Lactation ; Milk Proteins ; Milk, Human - chemistry ; Milk, Human - metabolism ; Postpartum Period</subject><ispartof>The Journal of nutrition, 2015-08, Vol.145 (8), p.1698-1708</ispartof><rights>2015 American Society for Nutrition.</rights><rights>2015 American Society for Nutrition 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-c19944231d76f2546c6fa1f53d47431d018e365ceb2901fdf85e4f57b7c521f03</citedby><cites>FETCH-LOGICAL-c453t-c19944231d76f2546c6fa1f53d47431d018e365ceb2901fdf85e4f57b7c521f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26041675$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Spevacek, Ann R</creatorcontrib><creatorcontrib>Smilowitz, Jennifer T</creatorcontrib><creatorcontrib>Chin, Elizabeth L</creatorcontrib><creatorcontrib>Underwood, Mark A</creatorcontrib><creatorcontrib>German, J Bruce</creatorcontrib><creatorcontrib>Slupsky, Carolyn M</creatorcontrib><title>Infant Maturity at Birth Reveals Minor Differences in the Maternal Milk Metabolome in the First Month of Lactation</title><title>The Journal of nutrition</title><addtitle>J Nutr</addtitle><description>Human milk is the gold standard of nutrition for infants, providing both protective and essential nutrients. Although much is known about milk from mothers giving birth to term infants, less is known about milk from mothers giving birth to premature infants. In addition, little is known about the composition and diversity of small molecules in these milks and how they change over the first month of lactation.
The objective was to understand how milk metabolites vary over the first month of lactation in mothers giving birth to term and preterm infants.
(1)H nuclear magnetic resonance (NMR) metabolomics was used to characterize metabolites that were present in micromolar to molar concentrations in colostrum (day 0-5 postpartum), transition milk (day 14), and mature milk (day 28) from mothers who delivered term (n = 15) and preterm (n = 13) infants. Principal components analysis, linear mixed-effects models (LMMs), and linear models (LMs) were used to explore the relation between infant maturity and the postpartum day of collection of milk samples.
By using a standard NMR metabolite library, 69 metabolites were identified in the milks, including 15 sugars, 23 amino acids and derivatives, 11 energy-related metabolites, 10 fatty acid-associated metabolites, 3 nucleotides and derivatives, 2 vitamins, and 5 bacteria-associated metabolites. Many metabolite concentrations followed a similar progression over time in both term and preterm milks, with more biological variation in metabolite concentrations in preterm milk. However, although lacto-N-neotetraose (LMM, P = 4.0 × 10(-5)) and lysine (LM, P = 1.5 × 10(-4)) significantly decreased in concentration in term milk over time, they did not significantly change in preterm milk.
Overall, the metabolic profile of human milk is dynamic throughout the first month of lactation, with more variability in preterm than in term milk and subtle differences in some metabolite concentrations. This trial was registered at clinicaltrials.gov as NCT01841268.</description><subject>Adult</subject><subject>Carbohydrate Metabolism</subject><subject>Carbohydrates - chemistry</subject><subject>Colostrum - chemistry</subject><subject>Female</subject><subject>Genomics, Proteomics, and Metabolomics</subject><subject>Humans</subject><subject>Infant, Newborn</subject><subject>Infant, Premature</subject><subject>Lactation</subject><subject>Milk Proteins</subject><subject>Milk, Human - chemistry</subject><subject>Milk, Human - metabolism</subject><subject>Postpartum Period</subject><issn>0022-3166</issn><issn>1541-6100</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkUtPWzEQRi1UBOGx7Lbyspubevy6uZtKLYUWKRESgrXlOOPG6Y1NbQeJf1-jACorSzNnjkfzEfIR2FQMUn3ZxCmAmnJgXPEDMgElodPA2AcyYYzzToDWx-SklA1jDOQwOyLHXDMJulcTkq-jt7HSha27HOoTtZV-D7mu6S0-oh0LXYSYMv0RvMeM0WGhIdK6xucRzNGOjRj_0AVWu0xj2uJr_yrk0sQpNlnydG5dtTWkeEYOfRPj-ct7Su6vLu8ufnXzm5_XF9_mnZNK1M7BMEjJBax67bmS2mlvwSuxkr1sVQYzFFo5XPKBgV_5mULpVb_sneLgmTglX_feh91yiyuHsWY7mocctjY_mWSDed-JYW1-p0cjVbuN1k3w-UWQ098dlmq2oTgcRxsx7YqBvu0wKDWIhnZ71OVUSkb_9g0w85yT2UTTcjL7nBr_6f_d3ujXYMQ_yICPBw</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Spevacek, Ann R</creator><creator>Smilowitz, Jennifer T</creator><creator>Chin, Elizabeth L</creator><creator>Underwood, Mark A</creator><creator>German, J Bruce</creator><creator>Slupsky, Carolyn M</creator><general>American Society for Nutrition</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150801</creationdate><title>Infant Maturity at Birth Reveals Minor Differences in the Maternal Milk Metabolome in the First Month of Lactation</title><author>Spevacek, Ann R ; Smilowitz, Jennifer T ; Chin, Elizabeth L ; Underwood, Mark A ; German, J Bruce ; Slupsky, Carolyn M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-c19944231d76f2546c6fa1f53d47431d018e365ceb2901fdf85e4f57b7c521f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adult</topic><topic>Carbohydrate Metabolism</topic><topic>Carbohydrates - chemistry</topic><topic>Colostrum - chemistry</topic><topic>Female</topic><topic>Genomics, Proteomics, and Metabolomics</topic><topic>Humans</topic><topic>Infant, Newborn</topic><topic>Infant, Premature</topic><topic>Lactation</topic><topic>Milk Proteins</topic><topic>Milk, Human - chemistry</topic><topic>Milk, Human - metabolism</topic><topic>Postpartum Period</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spevacek, Ann R</creatorcontrib><creatorcontrib>Smilowitz, Jennifer T</creatorcontrib><creatorcontrib>Chin, Elizabeth L</creatorcontrib><creatorcontrib>Underwood, Mark A</creatorcontrib><creatorcontrib>German, J Bruce</creatorcontrib><creatorcontrib>Slupsky, Carolyn M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of nutrition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spevacek, Ann R</au><au>Smilowitz, Jennifer T</au><au>Chin, Elizabeth L</au><au>Underwood, Mark A</au><au>German, J Bruce</au><au>Slupsky, Carolyn M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Infant Maturity at Birth Reveals Minor Differences in the Maternal Milk Metabolome in the First Month of Lactation</atitle><jtitle>The Journal of nutrition</jtitle><addtitle>J Nutr</addtitle><date>2015-08-01</date><risdate>2015</risdate><volume>145</volume><issue>8</issue><spage>1698</spage><epage>1708</epage><pages>1698-1708</pages><issn>0022-3166</issn><eissn>1541-6100</eissn><abstract>Human milk is the gold standard of nutrition for infants, providing both protective and essential nutrients. Although much is known about milk from mothers giving birth to term infants, less is known about milk from mothers giving birth to premature infants. In addition, little is known about the composition and diversity of small molecules in these milks and how they change over the first month of lactation.
The objective was to understand how milk metabolites vary over the first month of lactation in mothers giving birth to term and preterm infants.
(1)H nuclear magnetic resonance (NMR) metabolomics was used to characterize metabolites that were present in micromolar to molar concentrations in colostrum (day 0-5 postpartum), transition milk (day 14), and mature milk (day 28) from mothers who delivered term (n = 15) and preterm (n = 13) infants. Principal components analysis, linear mixed-effects models (LMMs), and linear models (LMs) were used to explore the relation between infant maturity and the postpartum day of collection of milk samples.
By using a standard NMR metabolite library, 69 metabolites were identified in the milks, including 15 sugars, 23 amino acids and derivatives, 11 energy-related metabolites, 10 fatty acid-associated metabolites, 3 nucleotides and derivatives, 2 vitamins, and 5 bacteria-associated metabolites. Many metabolite concentrations followed a similar progression over time in both term and preterm milks, with more biological variation in metabolite concentrations in preterm milk. However, although lacto-N-neotetraose (LMM, P = 4.0 × 10(-5)) and lysine (LM, P = 1.5 × 10(-4)) significantly decreased in concentration in term milk over time, they did not significantly change in preterm milk.
Overall, the metabolic profile of human milk is dynamic throughout the first month of lactation, with more variability in preterm than in term milk and subtle differences in some metabolite concentrations. This trial was registered at clinicaltrials.gov as NCT01841268.</abstract><cop>United States</cop><pub>American Society for Nutrition</pub><pmid>26041675</pmid><doi>10.3945/jn.115.210252</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3166 |
ispartof | The Journal of nutrition, 2015-08, Vol.145 (8), p.1698-1708 |
issn | 0022-3166 1541-6100 |
language | eng |
recordid | cdi_proquest_miscellaneous_1701895593 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Adult Carbohydrate Metabolism Carbohydrates - chemistry Colostrum - chemistry Female Genomics, Proteomics, and Metabolomics Humans Infant, Newborn Infant, Premature Lactation Milk Proteins Milk, Human - chemistry Milk, Human - metabolism Postpartum Period |
title | Infant Maturity at Birth Reveals Minor Differences in the Maternal Milk Metabolome in the First Month of Lactation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A06%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Infant%20Maturity%20at%20Birth%20Reveals%20Minor%20Differences%20in%20the%20Maternal%20Milk%20Metabolome%20in%20the%20First%20Month%20of%20Lactation&rft.jtitle=The%20Journal%20of%20nutrition&rft.au=Spevacek,%20Ann%20R&rft.date=2015-08-01&rft.volume=145&rft.issue=8&rft.spage=1698&rft.epage=1708&rft.pages=1698-1708&rft.issn=0022-3166&rft.eissn=1541-6100&rft_id=info:doi/10.3945/jn.115.210252&rft_dat=%3Cproquest_pubme%3E1701895593%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1701895593&rft_id=info:pmid/26041675&rfr_iscdi=true |