Reducing systems protecting the bacterial cell envelope from oxidative damage

Exposure of cells to elevated levels of reactive oxygen species (ROS) damages DNA, membrane lipids and proteins, which can potentially lead to cell death. In proteins, the sulfur-containing residues cysteine and methionine are particularly sensitive to oxidation, forming sulfenic acids and methionin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:FEBS letters 2015-06, Vol.589 (14), p.1559-1568
Hauptverfasser: Arts, Isabelle S., Gennaris, Alexandra, Collet, Jean-François
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1568
container_issue 14
container_start_page 1559
container_title FEBS letters
container_volume 589
creator Arts, Isabelle S.
Gennaris, Alexandra
Collet, Jean-François
description Exposure of cells to elevated levels of reactive oxygen species (ROS) damages DNA, membrane lipids and proteins, which can potentially lead to cell death. In proteins, the sulfur-containing residues cysteine and methionine are particularly sensitive to oxidation, forming sulfenic acids and methionine sulfoxides, respectively. The presence of protection mechanisms to scavenge ROS and repair damaged cellular components is therefore essential for cell survival. The bacterial cell envelope, which constitutes the first protection barrier from the extracellular environment, is particularly exposed to the oxidizing molecules generated by the host cells to kill invading microorganisms. Therefore, the presence of oxidative stress defense mechanisms in that compartment is crucial for cell survival. Here, we review recent findings that led to the identification of several reducing pathways protecting the cell envelope from oxidative damage. We focus in particular on the mechanisms that repair envelope proteins with oxidized cysteine and methionine residues and we discuss the major questions that remain to be solved.
doi_str_mv 10.1016/j.febslet.2015.04.057
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701895427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001457931500349X</els_id><sourcerecordid>1701895427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430X-3104e17ff4eee99c6c71620ea04c09de45f6dab77fe715b3fcbac4ea7380600f3</originalsourceid><addsrcrecordid>eNqNkUtPwzAQhC0EgvL4CaAcuSSsYztuTggQLwmExEPiZjnOGlwlTbHTQv89jlq4wsmyNTue_YaQQwoZBVqcTDKLVWiwz3KgIgOegZAbZETHkqWMF-NNMgKgPBWyZDtkN4QJxPuYlttkJxelkFLmI3L_iPXcuOlbEpahxzYkM9_1aPrhqX_HpNKmR-90kxhsmgSnC2y6GSbWd23Sfbla926BSa1b_Yb7ZMvqJuDB-twjL1eXzxc36d3D9e3F2V1qOIPXlFHgSKW1HBHL0hRG0iIH1MANlDVyYYtaV1JalFRUzJqYgqOWbAwFgGV75HjlG8N-zDH0qnVhyKen2M2DojJuWgqeyygVK6nxXQgerZp512q_VBTUQFJN1JqkGkgq4CqSjHNH6y_mVYv179QPuii4WQk-XYPL_7mqq8vz_GmoZWiFCgDGy9dodbqywshs4dCrYBxODdbOxypU3bk_0n4DURGeKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1701895427</pqid></control><display><type>article</type><title>Reducing systems protecting the bacterial cell envelope from oxidative damage</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via Wiley Online Library</source><source>Wiley Free Content</source><source>Access via ScienceDirect (Elsevier)</source><source>Alma/SFX Local Collection</source><creator>Arts, Isabelle S. ; Gennaris, Alexandra ; Collet, Jean-François</creator><creatorcontrib>Arts, Isabelle S. ; Gennaris, Alexandra ; Collet, Jean-François</creatorcontrib><description>Exposure of cells to elevated levels of reactive oxygen species (ROS) damages DNA, membrane lipids and proteins, which can potentially lead to cell death. In proteins, the sulfur-containing residues cysteine and methionine are particularly sensitive to oxidation, forming sulfenic acids and methionine sulfoxides, respectively. The presence of protection mechanisms to scavenge ROS and repair damaged cellular components is therefore essential for cell survival. The bacterial cell envelope, which constitutes the first protection barrier from the extracellular environment, is particularly exposed to the oxidizing molecules generated by the host cells to kill invading microorganisms. Therefore, the presence of oxidative stress defense mechanisms in that compartment is crucial for cell survival. Here, we review recent findings that led to the identification of several reducing pathways protecting the cell envelope from oxidative damage. We focus in particular on the mechanisms that repair envelope proteins with oxidized cysteine and methionine residues and we discuss the major questions that remain to be solved.</description><identifier>ISSN: 0014-5793</identifier><identifier>EISSN: 1873-3468</identifier><identifier>DOI: 10.1016/j.febslet.2015.04.057</identifier><identifier>PMID: 25957772</identifier><language>eng</language><publisher>England: Elsevier B.V</publisher><subject>Bacteria - metabolism ; bacterioferritin-comigratory protein ; BCP ; Cell Wall - metabolism ; Disulfides - metabolism ; DsbD ; DsbG ; electron ; H2O2 ; HOCl ; hydrogen peroxide ; hypochlorous acid ; inner membrane ; lipopolysaccharide ; LPS ; membrane ; Met ; Met-O ; Met-O2 ; methionine ; methionine sulfone ; Methionine sulfoxide ; methionine sulfoxide reductase ; molecular oxygen ; Msr ; NADPH ; nicotinamide adenine dinucleotide phosphate ; O2 ; outer membrane ; Oxidative Stress ; peptidoglycan ; Periplasm ; Periplasm - metabolism ; peroxiredoxin ; PilB ; Prx ; RCS ; reactive chlorine species ; reactive nitrogen species ; reactive oxygen species ; Reactive Oxygen Species - metabolism ; RNS ; ROS ; signal recognition particle ; SO2H ; SO3H ; SOD ; SOH ; SRP ; Sulfenic acid ; sulfinic acid ; sulfonic acid ; superoxide anion ; superoxide dismutase ; thiol peroxidase ; thioredoxin ; thioredoxin reductase ; Tpx ; Trx</subject><ispartof>FEBS letters, 2015-06, Vol.589 (14), p.1559-1568</ispartof><rights>2015 Federation of European Biochemical Societies</rights><rights>FEBS Letters 589 (2015) 1873-3468 © 2015 Federation of European Biochemical Societies</rights><rights>Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430X-3104e17ff4eee99c6c71620ea04c09de45f6dab77fe715b3fcbac4ea7380600f3</citedby><cites>FETCH-LOGICAL-c430X-3104e17ff4eee99c6c71620ea04c09de45f6dab77fe715b3fcbac4ea7380600f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1016%2Fj.febslet.2015.04.057$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.febslet.2015.04.057$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,1433,3550,27924,27925,45574,45575,45995,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25957772$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Arts, Isabelle S.</creatorcontrib><creatorcontrib>Gennaris, Alexandra</creatorcontrib><creatorcontrib>Collet, Jean-François</creatorcontrib><title>Reducing systems protecting the bacterial cell envelope from oxidative damage</title><title>FEBS letters</title><addtitle>FEBS Lett</addtitle><description>Exposure of cells to elevated levels of reactive oxygen species (ROS) damages DNA, membrane lipids and proteins, which can potentially lead to cell death. In proteins, the sulfur-containing residues cysteine and methionine are particularly sensitive to oxidation, forming sulfenic acids and methionine sulfoxides, respectively. The presence of protection mechanisms to scavenge ROS and repair damaged cellular components is therefore essential for cell survival. The bacterial cell envelope, which constitutes the first protection barrier from the extracellular environment, is particularly exposed to the oxidizing molecules generated by the host cells to kill invading microorganisms. Therefore, the presence of oxidative stress defense mechanisms in that compartment is crucial for cell survival. Here, we review recent findings that led to the identification of several reducing pathways protecting the cell envelope from oxidative damage. We focus in particular on the mechanisms that repair envelope proteins with oxidized cysteine and methionine residues and we discuss the major questions that remain to be solved.</description><subject>Bacteria - metabolism</subject><subject>bacterioferritin-comigratory protein</subject><subject>BCP</subject><subject>Cell Wall - metabolism</subject><subject>Disulfides - metabolism</subject><subject>DsbD</subject><subject>DsbG</subject><subject>electron</subject><subject>H2O2</subject><subject>HOCl</subject><subject>hydrogen peroxide</subject><subject>hypochlorous acid</subject><subject>inner membrane</subject><subject>lipopolysaccharide</subject><subject>LPS</subject><subject>membrane</subject><subject>Met</subject><subject>Met-O</subject><subject>Met-O2</subject><subject>methionine</subject><subject>methionine sulfone</subject><subject>Methionine sulfoxide</subject><subject>methionine sulfoxide reductase</subject><subject>molecular oxygen</subject><subject>Msr</subject><subject>NADPH</subject><subject>nicotinamide adenine dinucleotide phosphate</subject><subject>O2</subject><subject>outer membrane</subject><subject>Oxidative Stress</subject><subject>peptidoglycan</subject><subject>Periplasm</subject><subject>Periplasm - metabolism</subject><subject>peroxiredoxin</subject><subject>PilB</subject><subject>Prx</subject><subject>RCS</subject><subject>reactive chlorine species</subject><subject>reactive nitrogen species</subject><subject>reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>RNS</subject><subject>ROS</subject><subject>signal recognition particle</subject><subject>SO2H</subject><subject>SO3H</subject><subject>SOD</subject><subject>SOH</subject><subject>SRP</subject><subject>Sulfenic acid</subject><subject>sulfinic acid</subject><subject>sulfonic acid</subject><subject>superoxide anion</subject><subject>superoxide dismutase</subject><subject>thiol peroxidase</subject><subject>thioredoxin</subject><subject>thioredoxin reductase</subject><subject>Tpx</subject><subject>Trx</subject><issn>0014-5793</issn><issn>1873-3468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtPwzAQhC0EgvL4CaAcuSSsYztuTggQLwmExEPiZjnOGlwlTbHTQv89jlq4wsmyNTue_YaQQwoZBVqcTDKLVWiwz3KgIgOegZAbZETHkqWMF-NNMgKgPBWyZDtkN4QJxPuYlttkJxelkFLmI3L_iPXcuOlbEpahxzYkM9_1aPrhqX_HpNKmR-90kxhsmgSnC2y6GSbWd23Sfbla926BSa1b_Yb7ZMvqJuDB-twjL1eXzxc36d3D9e3F2V1qOIPXlFHgSKW1HBHL0hRG0iIH1MANlDVyYYtaV1JalFRUzJqYgqOWbAwFgGV75HjlG8N-zDH0qnVhyKen2M2DojJuWgqeyygVK6nxXQgerZp512q_VBTUQFJN1JqkGkgq4CqSjHNH6y_mVYv179QPuii4WQk-XYPL_7mqq8vz_GmoZWiFCgDGy9dodbqywshs4dCrYBxODdbOxypU3bk_0n4DURGeKg</recordid><startdate>20150622</startdate><enddate>20150622</enddate><creator>Arts, Isabelle S.</creator><creator>Gennaris, Alexandra</creator><creator>Collet, Jean-François</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150622</creationdate><title>Reducing systems protecting the bacterial cell envelope from oxidative damage</title><author>Arts, Isabelle S. ; Gennaris, Alexandra ; Collet, Jean-François</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430X-3104e17ff4eee99c6c71620ea04c09de45f6dab77fe715b3fcbac4ea7380600f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bacteria - metabolism</topic><topic>bacterioferritin-comigratory protein</topic><topic>BCP</topic><topic>Cell Wall - metabolism</topic><topic>Disulfides - metabolism</topic><topic>DsbD</topic><topic>DsbG</topic><topic>electron</topic><topic>H2O2</topic><topic>HOCl</topic><topic>hydrogen peroxide</topic><topic>hypochlorous acid</topic><topic>inner membrane</topic><topic>lipopolysaccharide</topic><topic>LPS</topic><topic>membrane</topic><topic>Met</topic><topic>Met-O</topic><topic>Met-O2</topic><topic>methionine</topic><topic>methionine sulfone</topic><topic>Methionine sulfoxide</topic><topic>methionine sulfoxide reductase</topic><topic>molecular oxygen</topic><topic>Msr</topic><topic>NADPH</topic><topic>nicotinamide adenine dinucleotide phosphate</topic><topic>O2</topic><topic>outer membrane</topic><topic>Oxidative Stress</topic><topic>peptidoglycan</topic><topic>Periplasm</topic><topic>Periplasm - metabolism</topic><topic>peroxiredoxin</topic><topic>PilB</topic><topic>Prx</topic><topic>RCS</topic><topic>reactive chlorine species</topic><topic>reactive nitrogen species</topic><topic>reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>RNS</topic><topic>ROS</topic><topic>signal recognition particle</topic><topic>SO2H</topic><topic>SO3H</topic><topic>SOD</topic><topic>SOH</topic><topic>SRP</topic><topic>Sulfenic acid</topic><topic>sulfinic acid</topic><topic>sulfonic acid</topic><topic>superoxide anion</topic><topic>superoxide dismutase</topic><topic>thiol peroxidase</topic><topic>thioredoxin</topic><topic>thioredoxin reductase</topic><topic>Tpx</topic><topic>Trx</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arts, Isabelle S.</creatorcontrib><creatorcontrib>Gennaris, Alexandra</creatorcontrib><creatorcontrib>Collet, Jean-François</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>FEBS letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arts, Isabelle S.</au><au>Gennaris, Alexandra</au><au>Collet, Jean-François</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reducing systems protecting the bacterial cell envelope from oxidative damage</atitle><jtitle>FEBS letters</jtitle><addtitle>FEBS Lett</addtitle><date>2015-06-22</date><risdate>2015</risdate><volume>589</volume><issue>14</issue><spage>1559</spage><epage>1568</epage><pages>1559-1568</pages><issn>0014-5793</issn><eissn>1873-3468</eissn><abstract>Exposure of cells to elevated levels of reactive oxygen species (ROS) damages DNA, membrane lipids and proteins, which can potentially lead to cell death. In proteins, the sulfur-containing residues cysteine and methionine are particularly sensitive to oxidation, forming sulfenic acids and methionine sulfoxides, respectively. The presence of protection mechanisms to scavenge ROS and repair damaged cellular components is therefore essential for cell survival. The bacterial cell envelope, which constitutes the first protection barrier from the extracellular environment, is particularly exposed to the oxidizing molecules generated by the host cells to kill invading microorganisms. Therefore, the presence of oxidative stress defense mechanisms in that compartment is crucial for cell survival. Here, we review recent findings that led to the identification of several reducing pathways protecting the cell envelope from oxidative damage. We focus in particular on the mechanisms that repair envelope proteins with oxidized cysteine and methionine residues and we discuss the major questions that remain to be solved.</abstract><cop>England</cop><pub>Elsevier B.V</pub><pmid>25957772</pmid><doi>10.1016/j.febslet.2015.04.057</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0014-5793
ispartof FEBS letters, 2015-06, Vol.589 (14), p.1559-1568
issn 0014-5793
1873-3468
language eng
recordid cdi_proquest_miscellaneous_1701895427
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via Wiley Online Library; Wiley Free Content; Access via ScienceDirect (Elsevier); Alma/SFX Local Collection
subjects Bacteria - metabolism
bacterioferritin-comigratory protein
BCP
Cell Wall - metabolism
Disulfides - metabolism
DsbD
DsbG
electron
H2O2
HOCl
hydrogen peroxide
hypochlorous acid
inner membrane
lipopolysaccharide
LPS
membrane
Met
Met-O
Met-O2
methionine
methionine sulfone
Methionine sulfoxide
methionine sulfoxide reductase
molecular oxygen
Msr
NADPH
nicotinamide adenine dinucleotide phosphate
O2
outer membrane
Oxidative Stress
peptidoglycan
Periplasm
Periplasm - metabolism
peroxiredoxin
PilB
Prx
RCS
reactive chlorine species
reactive nitrogen species
reactive oxygen species
Reactive Oxygen Species - metabolism
RNS
ROS
signal recognition particle
SO2H
SO3H
SOD
SOH
SRP
Sulfenic acid
sulfinic acid
sulfonic acid
superoxide anion
superoxide dismutase
thiol peroxidase
thioredoxin
thioredoxin reductase
Tpx
Trx
title Reducing systems protecting the bacterial cell envelope from oxidative damage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T18%3A18%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reducing%20systems%20protecting%20the%20bacterial%20cell%20envelope%20from%20oxidative%20damage&rft.jtitle=FEBS%20letters&rft.au=Arts,%20Isabelle%20S.&rft.date=2015-06-22&rft.volume=589&rft.issue=14&rft.spage=1559&rft.epage=1568&rft.pages=1559-1568&rft.issn=0014-5793&rft.eissn=1873-3468&rft_id=info:doi/10.1016/j.febslet.2015.04.057&rft_dat=%3Cproquest_cross%3E1701895427%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1701895427&rft_id=info:pmid/25957772&rft_els_id=S001457931500349X&rfr_iscdi=true