Reducing systems protecting the bacterial cell envelope from oxidative damage
Exposure of cells to elevated levels of reactive oxygen species (ROS) damages DNA, membrane lipids and proteins, which can potentially lead to cell death. In proteins, the sulfur-containing residues cysteine and methionine are particularly sensitive to oxidation, forming sulfenic acids and methionin...
Gespeichert in:
Veröffentlicht in: | FEBS letters 2015-06, Vol.589 (14), p.1559-1568 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1568 |
---|---|
container_issue | 14 |
container_start_page | 1559 |
container_title | FEBS letters |
container_volume | 589 |
creator | Arts, Isabelle S. Gennaris, Alexandra Collet, Jean-François |
description | Exposure of cells to elevated levels of reactive oxygen species (ROS) damages DNA, membrane lipids and proteins, which can potentially lead to cell death. In proteins, the sulfur-containing residues cysteine and methionine are particularly sensitive to oxidation, forming sulfenic acids and methionine sulfoxides, respectively. The presence of protection mechanisms to scavenge ROS and repair damaged cellular components is therefore essential for cell survival. The bacterial cell envelope, which constitutes the first protection barrier from the extracellular environment, is particularly exposed to the oxidizing molecules generated by the host cells to kill invading microorganisms. Therefore, the presence of oxidative stress defense mechanisms in that compartment is crucial for cell survival. Here, we review recent findings that led to the identification of several reducing pathways protecting the cell envelope from oxidative damage. We focus in particular on the mechanisms that repair envelope proteins with oxidized cysteine and methionine residues and we discuss the major questions that remain to be solved. |
doi_str_mv | 10.1016/j.febslet.2015.04.057 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701895427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001457931500349X</els_id><sourcerecordid>1701895427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430X-3104e17ff4eee99c6c71620ea04c09de45f6dab77fe715b3fcbac4ea7380600f3</originalsourceid><addsrcrecordid>eNqNkUtPwzAQhC0EgvL4CaAcuSSsYztuTggQLwmExEPiZjnOGlwlTbHTQv89jlq4wsmyNTue_YaQQwoZBVqcTDKLVWiwz3KgIgOegZAbZETHkqWMF-NNMgKgPBWyZDtkN4QJxPuYlttkJxelkFLmI3L_iPXcuOlbEpahxzYkM9_1aPrhqX_HpNKmR-90kxhsmgSnC2y6GSbWd23Sfbla926BSa1b_Yb7ZMvqJuDB-twjL1eXzxc36d3D9e3F2V1qOIPXlFHgSKW1HBHL0hRG0iIH1MANlDVyYYtaV1JalFRUzJqYgqOWbAwFgGV75HjlG8N-zDH0qnVhyKen2M2DojJuWgqeyygVK6nxXQgerZp512q_VBTUQFJN1JqkGkgq4CqSjHNH6y_mVYv179QPuii4WQk-XYPL_7mqq8vz_GmoZWiFCgDGy9dodbqywshs4dCrYBxODdbOxypU3bk_0n4DURGeKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1701895427</pqid></control><display><type>article</type><title>Reducing systems protecting the bacterial cell envelope from oxidative damage</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via Wiley Online Library</source><source>Wiley Free Content</source><source>Access via ScienceDirect (Elsevier)</source><source>Alma/SFX Local Collection</source><creator>Arts, Isabelle S. ; Gennaris, Alexandra ; Collet, Jean-François</creator><creatorcontrib>Arts, Isabelle S. ; Gennaris, Alexandra ; Collet, Jean-François</creatorcontrib><description>Exposure of cells to elevated levels of reactive oxygen species (ROS) damages DNA, membrane lipids and proteins, which can potentially lead to cell death. In proteins, the sulfur-containing residues cysteine and methionine are particularly sensitive to oxidation, forming sulfenic acids and methionine sulfoxides, respectively. The presence of protection mechanisms to scavenge ROS and repair damaged cellular components is therefore essential for cell survival. The bacterial cell envelope, which constitutes the first protection barrier from the extracellular environment, is particularly exposed to the oxidizing molecules generated by the host cells to kill invading microorganisms. Therefore, the presence of oxidative stress defense mechanisms in that compartment is crucial for cell survival. Here, we review recent findings that led to the identification of several reducing pathways protecting the cell envelope from oxidative damage. We focus in particular on the mechanisms that repair envelope proteins with oxidized cysteine and methionine residues and we discuss the major questions that remain to be solved.</description><identifier>ISSN: 0014-5793</identifier><identifier>EISSN: 1873-3468</identifier><identifier>DOI: 10.1016/j.febslet.2015.04.057</identifier><identifier>PMID: 25957772</identifier><language>eng</language><publisher>England: Elsevier B.V</publisher><subject>Bacteria - metabolism ; bacterioferritin-comigratory protein ; BCP ; Cell Wall - metabolism ; Disulfides - metabolism ; DsbD ; DsbG ; electron ; H2O2 ; HOCl ; hydrogen peroxide ; hypochlorous acid ; inner membrane ; lipopolysaccharide ; LPS ; membrane ; Met ; Met-O ; Met-O2 ; methionine ; methionine sulfone ; Methionine sulfoxide ; methionine sulfoxide reductase ; molecular oxygen ; Msr ; NADPH ; nicotinamide adenine dinucleotide phosphate ; O2 ; outer membrane ; Oxidative Stress ; peptidoglycan ; Periplasm ; Periplasm - metabolism ; peroxiredoxin ; PilB ; Prx ; RCS ; reactive chlorine species ; reactive nitrogen species ; reactive oxygen species ; Reactive Oxygen Species - metabolism ; RNS ; ROS ; signal recognition particle ; SO2H ; SO3H ; SOD ; SOH ; SRP ; Sulfenic acid ; sulfinic acid ; sulfonic acid ; superoxide anion ; superoxide dismutase ; thiol peroxidase ; thioredoxin ; thioredoxin reductase ; Tpx ; Trx</subject><ispartof>FEBS letters, 2015-06, Vol.589 (14), p.1559-1568</ispartof><rights>2015 Federation of European Biochemical Societies</rights><rights>FEBS Letters 589 (2015) 1873-3468 © 2015 Federation of European Biochemical Societies</rights><rights>Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430X-3104e17ff4eee99c6c71620ea04c09de45f6dab77fe715b3fcbac4ea7380600f3</citedby><cites>FETCH-LOGICAL-c430X-3104e17ff4eee99c6c71620ea04c09de45f6dab77fe715b3fcbac4ea7380600f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1016%2Fj.febslet.2015.04.057$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.febslet.2015.04.057$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,1433,3550,27924,27925,45574,45575,45995,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25957772$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Arts, Isabelle S.</creatorcontrib><creatorcontrib>Gennaris, Alexandra</creatorcontrib><creatorcontrib>Collet, Jean-François</creatorcontrib><title>Reducing systems protecting the bacterial cell envelope from oxidative damage</title><title>FEBS letters</title><addtitle>FEBS Lett</addtitle><description>Exposure of cells to elevated levels of reactive oxygen species (ROS) damages DNA, membrane lipids and proteins, which can potentially lead to cell death. In proteins, the sulfur-containing residues cysteine and methionine are particularly sensitive to oxidation, forming sulfenic acids and methionine sulfoxides, respectively. The presence of protection mechanisms to scavenge ROS and repair damaged cellular components is therefore essential for cell survival. The bacterial cell envelope, which constitutes the first protection barrier from the extracellular environment, is particularly exposed to the oxidizing molecules generated by the host cells to kill invading microorganisms. Therefore, the presence of oxidative stress defense mechanisms in that compartment is crucial for cell survival. Here, we review recent findings that led to the identification of several reducing pathways protecting the cell envelope from oxidative damage. We focus in particular on the mechanisms that repair envelope proteins with oxidized cysteine and methionine residues and we discuss the major questions that remain to be solved.</description><subject>Bacteria - metabolism</subject><subject>bacterioferritin-comigratory protein</subject><subject>BCP</subject><subject>Cell Wall - metabolism</subject><subject>Disulfides - metabolism</subject><subject>DsbD</subject><subject>DsbG</subject><subject>electron</subject><subject>H2O2</subject><subject>HOCl</subject><subject>hydrogen peroxide</subject><subject>hypochlorous acid</subject><subject>inner membrane</subject><subject>lipopolysaccharide</subject><subject>LPS</subject><subject>membrane</subject><subject>Met</subject><subject>Met-O</subject><subject>Met-O2</subject><subject>methionine</subject><subject>methionine sulfone</subject><subject>Methionine sulfoxide</subject><subject>methionine sulfoxide reductase</subject><subject>molecular oxygen</subject><subject>Msr</subject><subject>NADPH</subject><subject>nicotinamide adenine dinucleotide phosphate</subject><subject>O2</subject><subject>outer membrane</subject><subject>Oxidative Stress</subject><subject>peptidoglycan</subject><subject>Periplasm</subject><subject>Periplasm - metabolism</subject><subject>peroxiredoxin</subject><subject>PilB</subject><subject>Prx</subject><subject>RCS</subject><subject>reactive chlorine species</subject><subject>reactive nitrogen species</subject><subject>reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>RNS</subject><subject>ROS</subject><subject>signal recognition particle</subject><subject>SO2H</subject><subject>SO3H</subject><subject>SOD</subject><subject>SOH</subject><subject>SRP</subject><subject>Sulfenic acid</subject><subject>sulfinic acid</subject><subject>sulfonic acid</subject><subject>superoxide anion</subject><subject>superoxide dismutase</subject><subject>thiol peroxidase</subject><subject>thioredoxin</subject><subject>thioredoxin reductase</subject><subject>Tpx</subject><subject>Trx</subject><issn>0014-5793</issn><issn>1873-3468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtPwzAQhC0EgvL4CaAcuSSsYztuTggQLwmExEPiZjnOGlwlTbHTQv89jlq4wsmyNTue_YaQQwoZBVqcTDKLVWiwz3KgIgOegZAbZETHkqWMF-NNMgKgPBWyZDtkN4QJxPuYlttkJxelkFLmI3L_iPXcuOlbEpahxzYkM9_1aPrhqX_HpNKmR-90kxhsmgSnC2y6GSbWd23Sfbla926BSa1b_Yb7ZMvqJuDB-twjL1eXzxc36d3D9e3F2V1qOIPXlFHgSKW1HBHL0hRG0iIH1MANlDVyYYtaV1JalFRUzJqYgqOWbAwFgGV75HjlG8N-zDH0qnVhyKen2M2DojJuWgqeyygVK6nxXQgerZp512q_VBTUQFJN1JqkGkgq4CqSjHNH6y_mVYv179QPuii4WQk-XYPL_7mqq8vz_GmoZWiFCgDGy9dodbqywshs4dCrYBxODdbOxypU3bk_0n4DURGeKg</recordid><startdate>20150622</startdate><enddate>20150622</enddate><creator>Arts, Isabelle S.</creator><creator>Gennaris, Alexandra</creator><creator>Collet, Jean-François</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150622</creationdate><title>Reducing systems protecting the bacterial cell envelope from oxidative damage</title><author>Arts, Isabelle S. ; Gennaris, Alexandra ; Collet, Jean-François</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430X-3104e17ff4eee99c6c71620ea04c09de45f6dab77fe715b3fcbac4ea7380600f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bacteria - metabolism</topic><topic>bacterioferritin-comigratory protein</topic><topic>BCP</topic><topic>Cell Wall - metabolism</topic><topic>Disulfides - metabolism</topic><topic>DsbD</topic><topic>DsbG</topic><topic>electron</topic><topic>H2O2</topic><topic>HOCl</topic><topic>hydrogen peroxide</topic><topic>hypochlorous acid</topic><topic>inner membrane</topic><topic>lipopolysaccharide</topic><topic>LPS</topic><topic>membrane</topic><topic>Met</topic><topic>Met-O</topic><topic>Met-O2</topic><topic>methionine</topic><topic>methionine sulfone</topic><topic>Methionine sulfoxide</topic><topic>methionine sulfoxide reductase</topic><topic>molecular oxygen</topic><topic>Msr</topic><topic>NADPH</topic><topic>nicotinamide adenine dinucleotide phosphate</topic><topic>O2</topic><topic>outer membrane</topic><topic>Oxidative Stress</topic><topic>peptidoglycan</topic><topic>Periplasm</topic><topic>Periplasm - metabolism</topic><topic>peroxiredoxin</topic><topic>PilB</topic><topic>Prx</topic><topic>RCS</topic><topic>reactive chlorine species</topic><topic>reactive nitrogen species</topic><topic>reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>RNS</topic><topic>ROS</topic><topic>signal recognition particle</topic><topic>SO2H</topic><topic>SO3H</topic><topic>SOD</topic><topic>SOH</topic><topic>SRP</topic><topic>Sulfenic acid</topic><topic>sulfinic acid</topic><topic>sulfonic acid</topic><topic>superoxide anion</topic><topic>superoxide dismutase</topic><topic>thiol peroxidase</topic><topic>thioredoxin</topic><topic>thioredoxin reductase</topic><topic>Tpx</topic><topic>Trx</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arts, Isabelle S.</creatorcontrib><creatorcontrib>Gennaris, Alexandra</creatorcontrib><creatorcontrib>Collet, Jean-François</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>FEBS letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arts, Isabelle S.</au><au>Gennaris, Alexandra</au><au>Collet, Jean-François</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reducing systems protecting the bacterial cell envelope from oxidative damage</atitle><jtitle>FEBS letters</jtitle><addtitle>FEBS Lett</addtitle><date>2015-06-22</date><risdate>2015</risdate><volume>589</volume><issue>14</issue><spage>1559</spage><epage>1568</epage><pages>1559-1568</pages><issn>0014-5793</issn><eissn>1873-3468</eissn><abstract>Exposure of cells to elevated levels of reactive oxygen species (ROS) damages DNA, membrane lipids and proteins, which can potentially lead to cell death. In proteins, the sulfur-containing residues cysteine and methionine are particularly sensitive to oxidation, forming sulfenic acids and methionine sulfoxides, respectively. The presence of protection mechanisms to scavenge ROS and repair damaged cellular components is therefore essential for cell survival. The bacterial cell envelope, which constitutes the first protection barrier from the extracellular environment, is particularly exposed to the oxidizing molecules generated by the host cells to kill invading microorganisms. Therefore, the presence of oxidative stress defense mechanisms in that compartment is crucial for cell survival. Here, we review recent findings that led to the identification of several reducing pathways protecting the cell envelope from oxidative damage. We focus in particular on the mechanisms that repair envelope proteins with oxidized cysteine and methionine residues and we discuss the major questions that remain to be solved.</abstract><cop>England</cop><pub>Elsevier B.V</pub><pmid>25957772</pmid><doi>10.1016/j.febslet.2015.04.057</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0014-5793 |
ispartof | FEBS letters, 2015-06, Vol.589 (14), p.1559-1568 |
issn | 0014-5793 1873-3468 |
language | eng |
recordid | cdi_proquest_miscellaneous_1701895427 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via Wiley Online Library; Wiley Free Content; Access via ScienceDirect (Elsevier); Alma/SFX Local Collection |
subjects | Bacteria - metabolism bacterioferritin-comigratory protein BCP Cell Wall - metabolism Disulfides - metabolism DsbD DsbG electron H2O2 HOCl hydrogen peroxide hypochlorous acid inner membrane lipopolysaccharide LPS membrane Met Met-O Met-O2 methionine methionine sulfone Methionine sulfoxide methionine sulfoxide reductase molecular oxygen Msr NADPH nicotinamide adenine dinucleotide phosphate O2 outer membrane Oxidative Stress peptidoglycan Periplasm Periplasm - metabolism peroxiredoxin PilB Prx RCS reactive chlorine species reactive nitrogen species reactive oxygen species Reactive Oxygen Species - metabolism RNS ROS signal recognition particle SO2H SO3H SOD SOH SRP Sulfenic acid sulfinic acid sulfonic acid superoxide anion superoxide dismutase thiol peroxidase thioredoxin thioredoxin reductase Tpx Trx |
title | Reducing systems protecting the bacterial cell envelope from oxidative damage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T18%3A18%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reducing%20systems%20protecting%20the%20bacterial%20cell%20envelope%20from%20oxidative%20damage&rft.jtitle=FEBS%20letters&rft.au=Arts,%20Isabelle%20S.&rft.date=2015-06-22&rft.volume=589&rft.issue=14&rft.spage=1559&rft.epage=1568&rft.pages=1559-1568&rft.issn=0014-5793&rft.eissn=1873-3468&rft_id=info:doi/10.1016/j.febslet.2015.04.057&rft_dat=%3Cproquest_cross%3E1701895427%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1701895427&rft_id=info:pmid/25957772&rft_els_id=S001457931500349X&rfr_iscdi=true |