Hippocampal synaptic connectivity in phenylketonuria

In humans, lack of phenylalanine hydroxylase (Pah) activity results in phenylketonuria (PKU), which is associated with the development of severe mental retardation after birth. The underlying mechanisms, however, are poorly understood. Mutations of the Pah gene in Pah(enu2)/c57bl6 mice result in ele...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human molecular genetics 2015-02, Vol.24 (4), p.1007-1018
Hauptverfasser: Horling, Katja, Schlegel, Gudrun, Schulz, Sarah, Vierk, Ricardo, Ullrich, Kurt, Santer, René, Rune, Gabriele M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1018
container_issue 4
container_start_page 1007
container_title Human molecular genetics
container_volume 24
creator Horling, Katja
Schlegel, Gudrun
Schulz, Sarah
Vierk, Ricardo
Ullrich, Kurt
Santer, René
Rune, Gabriele M
description In humans, lack of phenylalanine hydroxylase (Pah) activity results in phenylketonuria (PKU), which is associated with the development of severe mental retardation after birth. The underlying mechanisms, however, are poorly understood. Mutations of the Pah gene in Pah(enu2)/c57bl6 mice result in elevated levels of phenylalanine in serum similar to those in humans suffering from PKU. In our study, long-term potentiation (LTP) and paired-pulse facilitation, measured at CA3-CA1 Schaffer collateral synapses, were impaired in acute hippocampal slices of Pah(enu2)/c57bl6 mice. In addition, we found reduced expression of presynaptic proteins, such as synaptophysin and the synaptosomal-associated protein 25 (SNAP-25), and enhanced expression of postsynaptic marker proteins, such as synaptopodin and spinophilin. Stereological counting of spine synapses at the ultrastructural level revealed higher synaptic density in the hippocampus, commencing at 3 weeks and persisting up to 12 weeks after birth. Consistent effects were seen in response to phenylalanine treatment in cultures of dissociated hippocampal neurones. Most importantly, in the hippocampus of Pah(enu2)/c57bl6 mice, we found a significant reduction in microglia activity. Reorganization of hippocampal circuitry after birth, namely synaptic pruning, relies on elimination of weak synapses by activated microglia in response to neuronal activity. Hence, our data strongly suggest that reduced microglial activity in response to impaired synaptic transmission affects physiological postnatal remodelling of synapses in the hippocampus and may trigger the development of mental retardation in PKU patients after birth.
doi_str_mv 10.1093/hmg/ddu515
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701501847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1701501847</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-61d3610e4543d8bc295f0b9add9e81bc658ecfef9153f4942b74d78d65b90ba93</originalsourceid><addsrcrecordid>eNqFkM1KxDAYRYMoTh3d-ADSpQh1vjQ_bZYyqCMMuNF1SJPUibZpbFqhb29lRrfezd0cLpeD0CWGWwyCrHbt28qYkWF2hBJMOWQ5lOQYJSA4zbgAvkBnMb4DYE5JcYoWOcsFF5gliG5cCJ1WbVBNGievwuB0qjvvrR7clxum1Pk07Kyfmg87dH7snTpHJ7Vqor049BK9Pty_rDfZ9vnxaX23zTRhfMg4NoRjsJRRYspK54LVUAlljLAlrjRnpdW1recjpKaC5lVBTVEazioBlRJkia73u6HvPkcbB9m6qG3TKG-7MUpcAGaAS1r8j3KWUwAyZ4lu9qjuuxh7W8vQu1b1k8Qgf4TKWajcC53hq8PuWLXW_KG_Bsk3ubRxug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652400333</pqid></control><display><type>article</type><title>Hippocampal synaptic connectivity in phenylketonuria</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Horling, Katja ; Schlegel, Gudrun ; Schulz, Sarah ; Vierk, Ricardo ; Ullrich, Kurt ; Santer, René ; Rune, Gabriele M</creator><creatorcontrib>Horling, Katja ; Schlegel, Gudrun ; Schulz, Sarah ; Vierk, Ricardo ; Ullrich, Kurt ; Santer, René ; Rune, Gabriele M</creatorcontrib><description>In humans, lack of phenylalanine hydroxylase (Pah) activity results in phenylketonuria (PKU), which is associated with the development of severe mental retardation after birth. The underlying mechanisms, however, are poorly understood. Mutations of the Pah gene in Pah(enu2)/c57bl6 mice result in elevated levels of phenylalanine in serum similar to those in humans suffering from PKU. In our study, long-term potentiation (LTP) and paired-pulse facilitation, measured at CA3-CA1 Schaffer collateral synapses, were impaired in acute hippocampal slices of Pah(enu2)/c57bl6 mice. In addition, we found reduced expression of presynaptic proteins, such as synaptophysin and the synaptosomal-associated protein 25 (SNAP-25), and enhanced expression of postsynaptic marker proteins, such as synaptopodin and spinophilin. Stereological counting of spine synapses at the ultrastructural level revealed higher synaptic density in the hippocampus, commencing at 3 weeks and persisting up to 12 weeks after birth. Consistent effects were seen in response to phenylalanine treatment in cultures of dissociated hippocampal neurones. Most importantly, in the hippocampus of Pah(enu2)/c57bl6 mice, we found a significant reduction in microglia activity. Reorganization of hippocampal circuitry after birth, namely synaptic pruning, relies on elimination of weak synapses by activated microglia in response to neuronal activity. Hence, our data strongly suggest that reduced microglial activity in response to impaired synaptic transmission affects physiological postnatal remodelling of synapses in the hippocampus and may trigger the development of mental retardation in PKU patients after birth.</description><identifier>ISSN: 0964-6906</identifier><identifier>EISSN: 1460-2083</identifier><identifier>DOI: 10.1093/hmg/ddu515</identifier><identifier>PMID: 25296915</identifier><language>eng</language><publisher>England</publisher><subject>Animals ; Disease Models, Animal ; Gene Expression Regulation - drug effects ; Hippocampus - drug effects ; Hippocampus - metabolism ; Humans ; Long-Term Potentiation ; Mice ; Mice, Knockout ; Microglia - metabolism ; Neurons - metabolism ; Phenylalanine - pharmacology ; Phenylalanine Hydroxylase - genetics ; Phenylketonurias - genetics ; Phenylketonurias - metabolism ; Synapses - metabolism ; Synaptic Transmission ; Synaptosomal-Associated Protein 25 - genetics ; Synaptosomal-Associated Protein 25 - metabolism</subject><ispartof>Human molecular genetics, 2015-02, Vol.24 (4), p.1007-1018</ispartof><rights>The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-61d3610e4543d8bc295f0b9add9e81bc658ecfef9153f4942b74d78d65b90ba93</citedby><cites>FETCH-LOGICAL-c356t-61d3610e4543d8bc295f0b9add9e81bc658ecfef9153f4942b74d78d65b90ba93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25296915$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Horling, Katja</creatorcontrib><creatorcontrib>Schlegel, Gudrun</creatorcontrib><creatorcontrib>Schulz, Sarah</creatorcontrib><creatorcontrib>Vierk, Ricardo</creatorcontrib><creatorcontrib>Ullrich, Kurt</creatorcontrib><creatorcontrib>Santer, René</creatorcontrib><creatorcontrib>Rune, Gabriele M</creatorcontrib><title>Hippocampal synaptic connectivity in phenylketonuria</title><title>Human molecular genetics</title><addtitle>Hum Mol Genet</addtitle><description>In humans, lack of phenylalanine hydroxylase (Pah) activity results in phenylketonuria (PKU), which is associated with the development of severe mental retardation after birth. The underlying mechanisms, however, are poorly understood. Mutations of the Pah gene in Pah(enu2)/c57bl6 mice result in elevated levels of phenylalanine in serum similar to those in humans suffering from PKU. In our study, long-term potentiation (LTP) and paired-pulse facilitation, measured at CA3-CA1 Schaffer collateral synapses, were impaired in acute hippocampal slices of Pah(enu2)/c57bl6 mice. In addition, we found reduced expression of presynaptic proteins, such as synaptophysin and the synaptosomal-associated protein 25 (SNAP-25), and enhanced expression of postsynaptic marker proteins, such as synaptopodin and spinophilin. Stereological counting of spine synapses at the ultrastructural level revealed higher synaptic density in the hippocampus, commencing at 3 weeks and persisting up to 12 weeks after birth. Consistent effects were seen in response to phenylalanine treatment in cultures of dissociated hippocampal neurones. Most importantly, in the hippocampus of Pah(enu2)/c57bl6 mice, we found a significant reduction in microglia activity. Reorganization of hippocampal circuitry after birth, namely synaptic pruning, relies on elimination of weak synapses by activated microglia in response to neuronal activity. Hence, our data strongly suggest that reduced microglial activity in response to impaired synaptic transmission affects physiological postnatal remodelling of synapses in the hippocampus and may trigger the development of mental retardation in PKU patients after birth.</description><subject>Animals</subject><subject>Disease Models, Animal</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Hippocampus - drug effects</subject><subject>Hippocampus - metabolism</subject><subject>Humans</subject><subject>Long-Term Potentiation</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Microglia - metabolism</subject><subject>Neurons - metabolism</subject><subject>Phenylalanine - pharmacology</subject><subject>Phenylalanine Hydroxylase - genetics</subject><subject>Phenylketonurias - genetics</subject><subject>Phenylketonurias - metabolism</subject><subject>Synapses - metabolism</subject><subject>Synaptic Transmission</subject><subject>Synaptosomal-Associated Protein 25 - genetics</subject><subject>Synaptosomal-Associated Protein 25 - metabolism</subject><issn>0964-6906</issn><issn>1460-2083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkM1KxDAYRYMoTh3d-ADSpQh1vjQ_bZYyqCMMuNF1SJPUibZpbFqhb29lRrfezd0cLpeD0CWGWwyCrHbt28qYkWF2hBJMOWQ5lOQYJSA4zbgAvkBnMb4DYE5JcYoWOcsFF5gliG5cCJ1WbVBNGievwuB0qjvvrR7clxum1Pk07Kyfmg87dH7snTpHJ7Vqor049BK9Pty_rDfZ9vnxaX23zTRhfMg4NoRjsJRRYspK54LVUAlljLAlrjRnpdW1recjpKaC5lVBTVEazioBlRJkia73u6HvPkcbB9m6qG3TKG-7MUpcAGaAS1r8j3KWUwAyZ4lu9qjuuxh7W8vQu1b1k8Qgf4TKWajcC53hq8PuWLXW_KG_Bsk3ubRxug</recordid><startdate>20150215</startdate><enddate>20150215</enddate><creator>Horling, Katja</creator><creator>Schlegel, Gudrun</creator><creator>Schulz, Sarah</creator><creator>Vierk, Ricardo</creator><creator>Ullrich, Kurt</creator><creator>Santer, René</creator><creator>Rune, Gabriele M</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20150215</creationdate><title>Hippocampal synaptic connectivity in phenylketonuria</title><author>Horling, Katja ; Schlegel, Gudrun ; Schulz, Sarah ; Vierk, Ricardo ; Ullrich, Kurt ; Santer, René ; Rune, Gabriele M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-61d3610e4543d8bc295f0b9add9e81bc658ecfef9153f4942b74d78d65b90ba93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Disease Models, Animal</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Hippocampus - drug effects</topic><topic>Hippocampus - metabolism</topic><topic>Humans</topic><topic>Long-Term Potentiation</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Microglia - metabolism</topic><topic>Neurons - metabolism</topic><topic>Phenylalanine - pharmacology</topic><topic>Phenylalanine Hydroxylase - genetics</topic><topic>Phenylketonurias - genetics</topic><topic>Phenylketonurias - metabolism</topic><topic>Synapses - metabolism</topic><topic>Synaptic Transmission</topic><topic>Synaptosomal-Associated Protein 25 - genetics</topic><topic>Synaptosomal-Associated Protein 25 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Horling, Katja</creatorcontrib><creatorcontrib>Schlegel, Gudrun</creatorcontrib><creatorcontrib>Schulz, Sarah</creatorcontrib><creatorcontrib>Vierk, Ricardo</creatorcontrib><creatorcontrib>Ullrich, Kurt</creatorcontrib><creatorcontrib>Santer, René</creatorcontrib><creatorcontrib>Rune, Gabriele M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Human molecular genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Horling, Katja</au><au>Schlegel, Gudrun</au><au>Schulz, Sarah</au><au>Vierk, Ricardo</au><au>Ullrich, Kurt</au><au>Santer, René</au><au>Rune, Gabriele M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hippocampal synaptic connectivity in phenylketonuria</atitle><jtitle>Human molecular genetics</jtitle><addtitle>Hum Mol Genet</addtitle><date>2015-02-15</date><risdate>2015</risdate><volume>24</volume><issue>4</issue><spage>1007</spage><epage>1018</epage><pages>1007-1018</pages><issn>0964-6906</issn><eissn>1460-2083</eissn><abstract>In humans, lack of phenylalanine hydroxylase (Pah) activity results in phenylketonuria (PKU), which is associated with the development of severe mental retardation after birth. The underlying mechanisms, however, are poorly understood. Mutations of the Pah gene in Pah(enu2)/c57bl6 mice result in elevated levels of phenylalanine in serum similar to those in humans suffering from PKU. In our study, long-term potentiation (LTP) and paired-pulse facilitation, measured at CA3-CA1 Schaffer collateral synapses, were impaired in acute hippocampal slices of Pah(enu2)/c57bl6 mice. In addition, we found reduced expression of presynaptic proteins, such as synaptophysin and the synaptosomal-associated protein 25 (SNAP-25), and enhanced expression of postsynaptic marker proteins, such as synaptopodin and spinophilin. Stereological counting of spine synapses at the ultrastructural level revealed higher synaptic density in the hippocampus, commencing at 3 weeks and persisting up to 12 weeks after birth. Consistent effects were seen in response to phenylalanine treatment in cultures of dissociated hippocampal neurones. Most importantly, in the hippocampus of Pah(enu2)/c57bl6 mice, we found a significant reduction in microglia activity. Reorganization of hippocampal circuitry after birth, namely synaptic pruning, relies on elimination of weak synapses by activated microglia in response to neuronal activity. Hence, our data strongly suggest that reduced microglial activity in response to impaired synaptic transmission affects physiological postnatal remodelling of synapses in the hippocampus and may trigger the development of mental retardation in PKU patients after birth.</abstract><cop>England</cop><pmid>25296915</pmid><doi>10.1093/hmg/ddu515</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0964-6906
ispartof Human molecular genetics, 2015-02, Vol.24 (4), p.1007-1018
issn 0964-6906
1460-2083
language eng
recordid cdi_proquest_miscellaneous_1701501847
source MEDLINE; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Animals
Disease Models, Animal
Gene Expression Regulation - drug effects
Hippocampus - drug effects
Hippocampus - metabolism
Humans
Long-Term Potentiation
Mice
Mice, Knockout
Microglia - metabolism
Neurons - metabolism
Phenylalanine - pharmacology
Phenylalanine Hydroxylase - genetics
Phenylketonurias - genetics
Phenylketonurias - metabolism
Synapses - metabolism
Synaptic Transmission
Synaptosomal-Associated Protein 25 - genetics
Synaptosomal-Associated Protein 25 - metabolism
title Hippocampal synaptic connectivity in phenylketonuria
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A07%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hippocampal%20synaptic%20connectivity%20in%20phenylketonuria&rft.jtitle=Human%20molecular%20genetics&rft.au=Horling,%20Katja&rft.date=2015-02-15&rft.volume=24&rft.issue=4&rft.spage=1007&rft.epage=1018&rft.pages=1007-1018&rft.issn=0964-6906&rft.eissn=1460-2083&rft_id=info:doi/10.1093/hmg/ddu515&rft_dat=%3Cproquest_cross%3E1701501847%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1652400333&rft_id=info:pmid/25296915&rfr_iscdi=true