An LES model study of the influence of the free tropospheric thermodynamic conditions on the stratocumulus response to a climate perturbation
Twenty‐five large‐eddy simulations are performed to study how free tropospheric thermodynamic conditions control equilibrium state solutions of stratocumulus‐topped marine boundary layers. In particular, we systematically vary the lower tropospheric stability (LTS) and a similar measure for the bulk...
Gespeichert in:
Veröffentlicht in: | Journal of advances in modeling earth systems 2015-06, Vol.7 (2), p.670-691 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Twenty‐five large‐eddy simulations are performed to study how free tropospheric thermodynamic conditions control equilibrium state solutions of stratocumulus‐topped marine boundary layers. In particular, we systematically vary the lower tropospheric stability (LTS) and a similar measure for the bulk humidity difference between the 700 hPa level and the surface,
ΔQ. For all simulations, a completely overcast boundary layer is obtained in which the turbulence is mainly driven by cloud top radiative cooling. The steady state liquid water path (LWP) is rather insensitive to the LTS, but increases significantly and almost linearly with the free tropospheric humidity. In a second suite of runs, the response of the stratocumulus layer to an idealized global warming scenario is assessed by applying a uniform warming of 2 K to the initial temperature profile including the sea surface while the initial relative humidity profile is kept identical to the control case. The warming of the sea surface acts to increase the latent heat flux, which invigorates turbulence in the boundary layer. The steady state inversion height therefore increases, despite the competing effect of a more humid free troposphere that increases the downwelling radiative flux and hence tends to decrease the entrainment rate. The stratocumulus layer nevertheless thins for all free tropospheric conditions as cloud base rises more than cloud top. This implies a positive stratocumulus cloud‐climate feedback for this scenario as thinner clouds reflect less shortwave radiation back to space. The cloud thinning response to the climate perturbation is found to be mostly controlled by the change of
ΔQ.
Key Points:
Positive stratocumulus cloud‐climate feedback found from steady state LESs
The LWP of top‐driven stratocumulus depends mainly on free tropospheric humidity
Climate response attributable to change of bulk lower tropospheric humidity jump |
---|---|
ISSN: | 1942-2466 1942-2466 |
DOI: | 10.1002/2014MS000380 |