Personalized symptoms forecasting for pollen-induced allergic rhinitis sufferers
Hay fever is a pollen-induced allergic reaction that strongly affects the overall quality of life of many individuals. The disorder may vary in severity and symptoms depending on patient-specific factors such as genetic disposition, individual threshold of pollen concentration levels, medication, fo...
Gespeichert in:
Veröffentlicht in: | International journal of biometeorology 2015-07, Vol.59 (7), p.889-897 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 897 |
---|---|
container_issue | 7 |
container_start_page | 889 |
container_title | International journal of biometeorology |
container_volume | 59 |
creator | Voukantsis, D. Berger, U. Tzima, F. Karatzas, K. Jaeger, S. Bergmann, K. C. |
description | Hay fever is a pollen-induced allergic reaction that strongly affects the overall quality of life of many individuals. The disorder may vary in severity and symptoms depending on patient-specific factors such as genetic disposition, individual threshold of pollen concentration levels, medication, former immunotherapy, and others. Thus, information services that improve the quality of life of hay fever sufferers must address the needs of each individual separately. In this paper, we demonstrate the development of information services that offer personalized pollen-induced symptoms forecasts. The backbone of these services consists of data of allergic symptoms reported by the users of the Personal Hay Fever Diary system and pollen concentration levels (European Aeroallergen Network) in several sampling sites. Data were analyzed using computational intelligence methods, resulting in highly customizable forecasting models that offer personalized warnings to users of the Patient Hay Fever Diary system. The overall system performance for the pilot area (Vienna and Lower Austria) reached a correlation coefficient of
r
= 0.71 ± 0.17 (average ± standard deviation) in a sample of 219 users with major contribution to the Pollen Hay Fever Diary system and an overall performance of
r
= 0.66 ± 0.18 in a second sample of 393 users, with minor contribution to the system. These findings provide an example of combining data from different sources using advanced data engineering in order to develop innovative e-health services with the capacity to provide more direct and personalized information to allergic rhinitis sufferers. |
doi_str_mv | 10.1007/s00484-014-0905-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701486053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3701185661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-3a9b1626d400203d4e11c76de63f6b1c50eece10f95c6b57d25fdda8670459f73</originalsourceid><addsrcrecordid>eNqFkUtLxDAUhYMoOj5-gBspuHFTvUnzaJcivkBwFroOneRmjPQxJu1Cf72poyKCuAhJyHdODvcQckjhlAKoswjAS54DTasCkcsNMqO8YDllgm-SGQCDXFFW7pDdGJ8haUqptskOE0wpxdiMzOcYYt_VjX9Dm8XXdjX0bcxcH9DUcfDdcjpnq75psMt9Z0eTuDrdwtKbLDz5zg8-ZnF0DkPy2idbrm4iHnzue-Tx6vLh4ia_u7--vTi_yw1XYsiLulpQyaTlU8jCcqTUKGlRFk4uqBGAaJCCq4SRC6EsE87aOsUHLiqnij1ysvZdhf5lxDjo1keDTVN32I9RU5XGUkoQxf-oLIXisqBVQo9_oc_9GNJ4PiiumAQlE0XXlAl9jAGdXgXf1uFVU9BTM3rdjE4R9NSMnjRHn87jokX7rfiqIgFsDcT01C0x_Pj6T9d3ffqYkQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1684726076</pqid></control><display><type>article</type><title>Personalized symptoms forecasting for pollen-induced allergic rhinitis sufferers</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Voukantsis, D. ; Berger, U. ; Tzima, F. ; Karatzas, K. ; Jaeger, S. ; Bergmann, K. C.</creator><creatorcontrib>Voukantsis, D. ; Berger, U. ; Tzima, F. ; Karatzas, K. ; Jaeger, S. ; Bergmann, K. C.</creatorcontrib><description>Hay fever is a pollen-induced allergic reaction that strongly affects the overall quality of life of many individuals. The disorder may vary in severity and symptoms depending on patient-specific factors such as genetic disposition, individual threshold of pollen concentration levels, medication, former immunotherapy, and others. Thus, information services that improve the quality of life of hay fever sufferers must address the needs of each individual separately. In this paper, we demonstrate the development of information services that offer personalized pollen-induced symptoms forecasts. The backbone of these services consists of data of allergic symptoms reported by the users of the Personal Hay Fever Diary system and pollen concentration levels (European Aeroallergen Network) in several sampling sites. Data were analyzed using computational intelligence methods, resulting in highly customizable forecasting models that offer personalized warnings to users of the Patient Hay Fever Diary system. The overall system performance for the pilot area (Vienna and Lower Austria) reached a correlation coefficient of
r
= 0.71 ± 0.17 (average ± standard deviation) in a sample of 219 users with major contribution to the Pollen Hay Fever Diary system and an overall performance of
r
= 0.66 ± 0.18 in a second sample of 393 users, with minor contribution to the system. These findings provide an example of combining data from different sources using advanced data engineering in order to develop innovative e-health services with the capacity to provide more direct and personalized information to allergic rhinitis sufferers.</description><identifier>ISSN: 0020-7128</identifier><identifier>EISSN: 1432-1254</identifier><identifier>DOI: 10.1007/s00484-014-0905-6</identifier><identifier>PMID: 25277722</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Allergies ; Animal Physiology ; Austria ; Biological and Medical Physics ; Biophysics ; Correlation coefficient ; Earth and Environmental Science ; Environment ; Environmental Health ; Forecasting ; Hay fever ; Health Communication - methods ; Humans ; Immunotherapy ; Meteorology ; Models, Theoretical ; Original Paper ; Plant Physiology ; Pollen ; Pollen - immunology ; Quality of life ; Rhinitis ; Rhinitis, Allergic - immunology ; Rhinitis, Allergic - physiopathology ; Sinuses ; Weather forecasting</subject><ispartof>International journal of biometeorology, 2015-07, Vol.59 (7), p.889-897</ispartof><rights>ISB 2014</rights><rights>ISB 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-3a9b1626d400203d4e11c76de63f6b1c50eece10f95c6b57d25fdda8670459f73</citedby><cites>FETCH-LOGICAL-c475t-3a9b1626d400203d4e11c76de63f6b1c50eece10f95c6b57d25fdda8670459f73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00484-014-0905-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00484-014-0905-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25277722$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Voukantsis, D.</creatorcontrib><creatorcontrib>Berger, U.</creatorcontrib><creatorcontrib>Tzima, F.</creatorcontrib><creatorcontrib>Karatzas, K.</creatorcontrib><creatorcontrib>Jaeger, S.</creatorcontrib><creatorcontrib>Bergmann, K. C.</creatorcontrib><title>Personalized symptoms forecasting for pollen-induced allergic rhinitis sufferers</title><title>International journal of biometeorology</title><addtitle>Int J Biometeorol</addtitle><addtitle>Int J Biometeorol</addtitle><description>Hay fever is a pollen-induced allergic reaction that strongly affects the overall quality of life of many individuals. The disorder may vary in severity and symptoms depending on patient-specific factors such as genetic disposition, individual threshold of pollen concentration levels, medication, former immunotherapy, and others. Thus, information services that improve the quality of life of hay fever sufferers must address the needs of each individual separately. In this paper, we demonstrate the development of information services that offer personalized pollen-induced symptoms forecasts. The backbone of these services consists of data of allergic symptoms reported by the users of the Personal Hay Fever Diary system and pollen concentration levels (European Aeroallergen Network) in several sampling sites. Data were analyzed using computational intelligence methods, resulting in highly customizable forecasting models that offer personalized warnings to users of the Patient Hay Fever Diary system. The overall system performance for the pilot area (Vienna and Lower Austria) reached a correlation coefficient of
r
= 0.71 ± 0.17 (average ± standard deviation) in a sample of 219 users with major contribution to the Pollen Hay Fever Diary system and an overall performance of
r
= 0.66 ± 0.18 in a second sample of 393 users, with minor contribution to the system. These findings provide an example of combining data from different sources using advanced data engineering in order to develop innovative e-health services with the capacity to provide more direct and personalized information to allergic rhinitis sufferers.</description><subject>Algorithms</subject><subject>Allergies</subject><subject>Animal Physiology</subject><subject>Austria</subject><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Correlation coefficient</subject><subject>Earth and Environmental Science</subject><subject>Environment</subject><subject>Environmental Health</subject><subject>Forecasting</subject><subject>Hay fever</subject><subject>Health Communication - methods</subject><subject>Humans</subject><subject>Immunotherapy</subject><subject>Meteorology</subject><subject>Models, Theoretical</subject><subject>Original Paper</subject><subject>Plant Physiology</subject><subject>Pollen</subject><subject>Pollen - immunology</subject><subject>Quality of life</subject><subject>Rhinitis</subject><subject>Rhinitis, Allergic - immunology</subject><subject>Rhinitis, Allergic - physiopathology</subject><subject>Sinuses</subject><subject>Weather forecasting</subject><issn>0020-7128</issn><issn>1432-1254</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkUtLxDAUhYMoOj5-gBspuHFTvUnzaJcivkBwFroOneRmjPQxJu1Cf72poyKCuAhJyHdODvcQckjhlAKoswjAS54DTasCkcsNMqO8YDllgm-SGQCDXFFW7pDdGJ8haUqptskOE0wpxdiMzOcYYt_VjX9Dm8XXdjX0bcxcH9DUcfDdcjpnq75psMt9Z0eTuDrdwtKbLDz5zg8-ZnF0DkPy2idbrm4iHnzue-Tx6vLh4ia_u7--vTi_yw1XYsiLulpQyaTlU8jCcqTUKGlRFk4uqBGAaJCCq4SRC6EsE87aOsUHLiqnij1ysvZdhf5lxDjo1keDTVN32I9RU5XGUkoQxf-oLIXisqBVQo9_oc_9GNJ4PiiumAQlE0XXlAl9jAGdXgXf1uFVU9BTM3rdjE4R9NSMnjRHn87jokX7rfiqIgFsDcT01C0x_Pj6T9d3ffqYkQ</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Voukantsis, D.</creator><creator>Berger, U.</creator><creator>Tzima, F.</creator><creator>Karatzas, K.</creator><creator>Jaeger, S.</creator><creator>Bergmann, K. C.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88F</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KL.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M1Q</scope><scope>M2P</scope><scope>M7P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20150701</creationdate><title>Personalized symptoms forecasting for pollen-induced allergic rhinitis sufferers</title><author>Voukantsis, D. ; Berger, U. ; Tzima, F. ; Karatzas, K. ; Jaeger, S. ; Bergmann, K. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-3a9b1626d400203d4e11c76de63f6b1c50eece10f95c6b57d25fdda8670459f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Allergies</topic><topic>Animal Physiology</topic><topic>Austria</topic><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Correlation coefficient</topic><topic>Earth and Environmental Science</topic><topic>Environment</topic><topic>Environmental Health</topic><topic>Forecasting</topic><topic>Hay fever</topic><topic>Health Communication - methods</topic><topic>Humans</topic><topic>Immunotherapy</topic><topic>Meteorology</topic><topic>Models, Theoretical</topic><topic>Original Paper</topic><topic>Plant Physiology</topic><topic>Pollen</topic><topic>Pollen - immunology</topic><topic>Quality of life</topic><topic>Rhinitis</topic><topic>Rhinitis, Allergic - immunology</topic><topic>Rhinitis, Allergic - physiopathology</topic><topic>Sinuses</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Voukantsis, D.</creatorcontrib><creatorcontrib>Berger, U.</creatorcontrib><creatorcontrib>Tzima, F.</creatorcontrib><creatorcontrib>Karatzas, K.</creatorcontrib><creatorcontrib>Jaeger, S.</creatorcontrib><creatorcontrib>Bergmann, K. C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of biometeorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Voukantsis, D.</au><au>Berger, U.</au><au>Tzima, F.</au><au>Karatzas, K.</au><au>Jaeger, S.</au><au>Bergmann, K. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Personalized symptoms forecasting for pollen-induced allergic rhinitis sufferers</atitle><jtitle>International journal of biometeorology</jtitle><stitle>Int J Biometeorol</stitle><addtitle>Int J Biometeorol</addtitle><date>2015-07-01</date><risdate>2015</risdate><volume>59</volume><issue>7</issue><spage>889</spage><epage>897</epage><pages>889-897</pages><issn>0020-7128</issn><eissn>1432-1254</eissn><abstract>Hay fever is a pollen-induced allergic reaction that strongly affects the overall quality of life of many individuals. The disorder may vary in severity and symptoms depending on patient-specific factors such as genetic disposition, individual threshold of pollen concentration levels, medication, former immunotherapy, and others. Thus, information services that improve the quality of life of hay fever sufferers must address the needs of each individual separately. In this paper, we demonstrate the development of information services that offer personalized pollen-induced symptoms forecasts. The backbone of these services consists of data of allergic symptoms reported by the users of the Personal Hay Fever Diary system and pollen concentration levels (European Aeroallergen Network) in several sampling sites. Data were analyzed using computational intelligence methods, resulting in highly customizable forecasting models that offer personalized warnings to users of the Patient Hay Fever Diary system. The overall system performance for the pilot area (Vienna and Lower Austria) reached a correlation coefficient of
r
= 0.71 ± 0.17 (average ± standard deviation) in a sample of 219 users with major contribution to the Pollen Hay Fever Diary system and an overall performance of
r
= 0.66 ± 0.18 in a second sample of 393 users, with minor contribution to the system. These findings provide an example of combining data from different sources using advanced data engineering in order to develop innovative e-health services with the capacity to provide more direct and personalized information to allergic rhinitis sufferers.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>25277722</pmid><doi>10.1007/s00484-014-0905-6</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7128 |
ispartof | International journal of biometeorology, 2015-07, Vol.59 (7), p.889-897 |
issn | 0020-7128 1432-1254 |
language | eng |
recordid | cdi_proquest_miscellaneous_1701486053 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Algorithms Allergies Animal Physiology Austria Biological and Medical Physics Biophysics Correlation coefficient Earth and Environmental Science Environment Environmental Health Forecasting Hay fever Health Communication - methods Humans Immunotherapy Meteorology Models, Theoretical Original Paper Plant Physiology Pollen Pollen - immunology Quality of life Rhinitis Rhinitis, Allergic - immunology Rhinitis, Allergic - physiopathology Sinuses Weather forecasting |
title | Personalized symptoms forecasting for pollen-induced allergic rhinitis sufferers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T08%3A52%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Personalized%20symptoms%20forecasting%20for%20pollen-induced%20allergic%20rhinitis%20sufferers&rft.jtitle=International%20journal%20of%20biometeorology&rft.au=Voukantsis,%20D.&rft.date=2015-07-01&rft.volume=59&rft.issue=7&rft.spage=889&rft.epage=897&rft.pages=889-897&rft.issn=0020-7128&rft.eissn=1432-1254&rft_id=info:doi/10.1007/s00484-014-0905-6&rft_dat=%3Cproquest_cross%3E3701185661%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1684726076&rft_id=info:pmid/25277722&rfr_iscdi=true |