Small molecules demonstrate the role of dynamin as a bi-directional regulator of the exocytosis fusion pore and vesicle release

Hormones and neurotransmitters are stored in specialised vesicles and released from excitable cells through exocytosis. During vesicle fusion with the plasma membrane, a transient fusion pore is created that enables transmitter release. The protein dynamin is known to regulate fusion pore expansion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular psychiatry 2015-07, Vol.20 (7), p.810-819
Hauptverfasser: Jackson, J, Papadopulos, A, Meunier, F A, McCluskey, A, Robinson, P J, Keating, D J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 819
container_issue 7
container_start_page 810
container_title Molecular psychiatry
container_volume 20
creator Jackson, J
Papadopulos, A
Meunier, F A
McCluskey, A
Robinson, P J
Keating, D J
description Hormones and neurotransmitters are stored in specialised vesicles and released from excitable cells through exocytosis. During vesicle fusion with the plasma membrane, a transient fusion pore is created that enables transmitter release. The protein dynamin is known to regulate fusion pore expansion (FPE). The mechanism is unknown, but requires its oligomerisation-stimulated GTPase activity. We used a palette of small molecule dynamin modulators to reveal bi-directional regulation of FPE by dynamin and vesicle release in chromaffin cells. The dynamin inhibitors Dynole 34-2 and Dyngo 4a and the dynamin activator Ryngo 1-23 reduced or increased catecholamine released from single vesicles, respectively. Total internal reflection fluorescence (TIRF) microscopy demonstrated that dynamin stimulation with Ryngo 1-23 reduced the number of neuropeptide Y (NPY) kiss-and-run events, but not full fusion events, and slowed full fusion release kinetics. Amperometric stand-alone foot signals, representing transient kiss-and-run events, were less frequent but were of longer duration, similarly to full amperometric spikes and pre-spike foot signals. These effects are not due to alterations in vesicle size. Ryngo 1-23 action was blocked by inhibitors of actin polymerisation or myosin II. Therefore, we demonstrate using a novel pharmacological approach that dynamin not only controls FPE during exocytosis, but is a bi-directional modulator of the fusion pore that increases or decreases the amount released from a vesicle during exocytosis if it is activated or inhibited, respectively. As such, dynamin has the ability to exquisitely fine-tune transmitter release.
doi_str_mv 10.1038/mp.2015.56
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701478787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A420436102</galeid><sourcerecordid>A420436102</sourcerecordid><originalsourceid>FETCH-LOGICAL-c651t-81a54a68577cde258b5a3af039044aab7d46e3a10235d3ec64b4ffbbd3cd42f23</originalsourceid><addsrcrecordid>eNqFkkuLFDEQx4Mo7jp68QNIwIsoPebdPcdlWR-w4EE9h3RSGbOkO23SvTin_eqmmfUtSh0SUr_6p14IPaZkSwnvXg7TlhEqt1LdQadUtKqRsu3u1juXu0bQTpygB6VcEbI65X10wuSO7wRhp-jm_WBixEOKYJcIBTsY0ljmbGbA8yfAuXpw8tgdRjOEEZuCDe5D40IGO4c0mogz7Jdo5pRXcA2CL8ke5lRCwX4pFcJTyoDN6PA1lGCrZIYIpsBDdM-bWODR7blBH19dfDh_01y-e_32_OyysUrSuemokcKoTratdcBk10vDjSd8R4Qwpm-dUMANJYxLx8Eq0Qvv-95x6wTzjG_Qs6PulNPnBcqsh1AsxGhGSEvRtF2b01X7P6p2tMKkXdGnv6FXacm1JUUzzqliSpHuX1TVqinXYcgf1N5E0GH0qQ7Brl_rM8GI4GqtboO2f6Gq1bkFm0bwob7_EvD8GGBzKiWD11MOg8kHTYle10cPk17XR0tV4Se3mS79AO47-m1fKvDiCJTqGveQfyrlT7mvofPMlQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1690239395</pqid></control><display><type>article</type><title>Small molecules demonstrate the role of dynamin as a bi-directional regulator of the exocytosis fusion pore and vesicle release</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Jackson, J ; Papadopulos, A ; Meunier, F A ; McCluskey, A ; Robinson, P J ; Keating, D J</creator><creatorcontrib>Jackson, J ; Papadopulos, A ; Meunier, F A ; McCluskey, A ; Robinson, P J ; Keating, D J</creatorcontrib><description>Hormones and neurotransmitters are stored in specialised vesicles and released from excitable cells through exocytosis. During vesicle fusion with the plasma membrane, a transient fusion pore is created that enables transmitter release. The protein dynamin is known to regulate fusion pore expansion (FPE). The mechanism is unknown, but requires its oligomerisation-stimulated GTPase activity. We used a palette of small molecule dynamin modulators to reveal bi-directional regulation of FPE by dynamin and vesicle release in chromaffin cells. The dynamin inhibitors Dynole 34-2 and Dyngo 4a and the dynamin activator Ryngo 1-23 reduced or increased catecholamine released from single vesicles, respectively. Total internal reflection fluorescence (TIRF) microscopy demonstrated that dynamin stimulation with Ryngo 1-23 reduced the number of neuropeptide Y (NPY) kiss-and-run events, but not full fusion events, and slowed full fusion release kinetics. Amperometric stand-alone foot signals, representing transient kiss-and-run events, were less frequent but were of longer duration, similarly to full amperometric spikes and pre-spike foot signals. These effects are not due to alterations in vesicle size. Ryngo 1-23 action was blocked by inhibitors of actin polymerisation or myosin II. Therefore, we demonstrate using a novel pharmacological approach that dynamin not only controls FPE during exocytosis, but is a bi-directional modulator of the fusion pore that increases or decreases the amount released from a vesicle during exocytosis if it is activated or inhibited, respectively. As such, dynamin has the ability to exquisitely fine-tune transmitter release.</description><identifier>ISSN: 1359-4184</identifier><identifier>EISSN: 1476-5578</identifier><identifier>DOI: 10.1038/mp.2015.56</identifier><identifier>PMID: 25939402</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14/63 ; 631/378 ; 631/443 ; Actin ; Animals ; Behavioral Sciences ; Biological Psychology ; Catecholamine ; Catecholamines ; Catecholamines - metabolism ; Cell regulation ; Cells, Cultured ; Chromaffin cells ; Chromaffin Cells - drug effects ; Chromaffin Cells - metabolism ; Cyanoacrylates - pharmacology ; Dynamin ; Dynamins - antagonists &amp; inhibitors ; Dynamins - metabolism ; Electrical measurement ; Exocytosis ; Exocytosis - drug effects ; Exocytosis - physiology ; Feet ; Fluorescence ; GTPases ; Guanosine triphosphatases ; Hormones ; Hydrazones - pharmacology ; immediate-communication ; Indoles - pharmacology ; Inhibitors ; Kinetics ; Lipids ; Male ; Medical research ; Medicine ; Medicine &amp; Public Health ; Membrane fusion ; Mice, Inbred C57BL ; Microscopy, Fluorescence ; Mutation ; Myosin ; Naphthols - pharmacology ; Neurological research ; Neuromodulation ; Neuropeptide Y ; Neuropeptide Y - metabolism ; Neuropeptides ; Neurosciences ; Neurotransmitter release ; Neurotransmitters ; Pharmacotherapy ; Physiological aspects ; Physiology ; Plasma ; Polymerization ; Proteins ; Psychiatry ; Research centers ; Secretory Vesicles - drug effects ; Secretory Vesicles - metabolism ; Synaptic vesicles ; Transmitters ; Tyrphostins - pharmacology ; Vesicle fusion ; Vesicles</subject><ispartof>Molecular psychiatry, 2015-07, Vol.20 (7), p.810-819</ispartof><rights>Macmillan Publishers Limited 2015</rights><rights>COPYRIGHT 2015 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jul 2015</rights><rights>Macmillan Publishers Limited 2015.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c651t-81a54a68577cde258b5a3af039044aab7d46e3a10235d3ec64b4ffbbd3cd42f23</citedby><cites>FETCH-LOGICAL-c651t-81a54a68577cde258b5a3af039044aab7d46e3a10235d3ec64b4ffbbd3cd42f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/mp.2015.56$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/mp.2015.56$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25939402$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jackson, J</creatorcontrib><creatorcontrib>Papadopulos, A</creatorcontrib><creatorcontrib>Meunier, F A</creatorcontrib><creatorcontrib>McCluskey, A</creatorcontrib><creatorcontrib>Robinson, P J</creatorcontrib><creatorcontrib>Keating, D J</creatorcontrib><title>Small molecules demonstrate the role of dynamin as a bi-directional regulator of the exocytosis fusion pore and vesicle release</title><title>Molecular psychiatry</title><addtitle>Mol Psychiatry</addtitle><addtitle>Mol Psychiatry</addtitle><description>Hormones and neurotransmitters are stored in specialised vesicles and released from excitable cells through exocytosis. During vesicle fusion with the plasma membrane, a transient fusion pore is created that enables transmitter release. The protein dynamin is known to regulate fusion pore expansion (FPE). The mechanism is unknown, but requires its oligomerisation-stimulated GTPase activity. We used a palette of small molecule dynamin modulators to reveal bi-directional regulation of FPE by dynamin and vesicle release in chromaffin cells. The dynamin inhibitors Dynole 34-2 and Dyngo 4a and the dynamin activator Ryngo 1-23 reduced or increased catecholamine released from single vesicles, respectively. Total internal reflection fluorescence (TIRF) microscopy demonstrated that dynamin stimulation with Ryngo 1-23 reduced the number of neuropeptide Y (NPY) kiss-and-run events, but not full fusion events, and slowed full fusion release kinetics. Amperometric stand-alone foot signals, representing transient kiss-and-run events, were less frequent but were of longer duration, similarly to full amperometric spikes and pre-spike foot signals. These effects are not due to alterations in vesicle size. Ryngo 1-23 action was blocked by inhibitors of actin polymerisation or myosin II. Therefore, we demonstrate using a novel pharmacological approach that dynamin not only controls FPE during exocytosis, but is a bi-directional modulator of the fusion pore that increases or decreases the amount released from a vesicle during exocytosis if it is activated or inhibited, respectively. As such, dynamin has the ability to exquisitely fine-tune transmitter release.</description><subject>14/63</subject><subject>631/378</subject><subject>631/443</subject><subject>Actin</subject><subject>Animals</subject><subject>Behavioral Sciences</subject><subject>Biological Psychology</subject><subject>Catecholamine</subject><subject>Catecholamines</subject><subject>Catecholamines - metabolism</subject><subject>Cell regulation</subject><subject>Cells, Cultured</subject><subject>Chromaffin cells</subject><subject>Chromaffin Cells - drug effects</subject><subject>Chromaffin Cells - metabolism</subject><subject>Cyanoacrylates - pharmacology</subject><subject>Dynamin</subject><subject>Dynamins - antagonists &amp; inhibitors</subject><subject>Dynamins - metabolism</subject><subject>Electrical measurement</subject><subject>Exocytosis</subject><subject>Exocytosis - drug effects</subject><subject>Exocytosis - physiology</subject><subject>Feet</subject><subject>Fluorescence</subject><subject>GTPases</subject><subject>Guanosine triphosphatases</subject><subject>Hormones</subject><subject>Hydrazones - pharmacology</subject><subject>immediate-communication</subject><subject>Indoles - pharmacology</subject><subject>Inhibitors</subject><subject>Kinetics</subject><subject>Lipids</subject><subject>Male</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Membrane fusion</subject><subject>Mice, Inbred C57BL</subject><subject>Microscopy, Fluorescence</subject><subject>Mutation</subject><subject>Myosin</subject><subject>Naphthols - pharmacology</subject><subject>Neurological research</subject><subject>Neuromodulation</subject><subject>Neuropeptide Y</subject><subject>Neuropeptide Y - metabolism</subject><subject>Neuropeptides</subject><subject>Neurosciences</subject><subject>Neurotransmitter release</subject><subject>Neurotransmitters</subject><subject>Pharmacotherapy</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Plasma</subject><subject>Polymerization</subject><subject>Proteins</subject><subject>Psychiatry</subject><subject>Research centers</subject><subject>Secretory Vesicles - drug effects</subject><subject>Secretory Vesicles - metabolism</subject><subject>Synaptic vesicles</subject><subject>Transmitters</subject><subject>Tyrphostins - pharmacology</subject><subject>Vesicle fusion</subject><subject>Vesicles</subject><issn>1359-4184</issn><issn>1476-5578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkkuLFDEQx4Mo7jp68QNIwIsoPebdPcdlWR-w4EE9h3RSGbOkO23SvTin_eqmmfUtSh0SUr_6p14IPaZkSwnvXg7TlhEqt1LdQadUtKqRsu3u1juXu0bQTpygB6VcEbI65X10wuSO7wRhp-jm_WBixEOKYJcIBTsY0ljmbGbA8yfAuXpw8tgdRjOEEZuCDe5D40IGO4c0mogz7Jdo5pRXcA2CL8ke5lRCwX4pFcJTyoDN6PA1lGCrZIYIpsBDdM-bWODR7blBH19dfDh_01y-e_32_OyysUrSuemokcKoTratdcBk10vDjSd8R4Qwpm-dUMANJYxLx8Eq0Qvv-95x6wTzjG_Qs6PulNPnBcqsh1AsxGhGSEvRtF2b01X7P6p2tMKkXdGnv6FXacm1JUUzzqliSpHuX1TVqinXYcgf1N5E0GH0qQ7Brl_rM8GI4GqtboO2f6Gq1bkFm0bwob7_EvD8GGBzKiWD11MOg8kHTYle10cPk17XR0tV4Se3mS79AO47-m1fKvDiCJTqGveQfyrlT7mvofPMlQ</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Jackson, J</creator><creator>Papadopulos, A</creator><creator>Meunier, F A</creator><creator>McCluskey, A</creator><creator>Robinson, P J</creator><creator>Keating, D J</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20150701</creationdate><title>Small molecules demonstrate the role of dynamin as a bi-directional regulator of the exocytosis fusion pore and vesicle release</title><author>Jackson, J ; Papadopulos, A ; Meunier, F A ; McCluskey, A ; Robinson, P J ; Keating, D J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c651t-81a54a68577cde258b5a3af039044aab7d46e3a10235d3ec64b4ffbbd3cd42f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>14/63</topic><topic>631/378</topic><topic>631/443</topic><topic>Actin</topic><topic>Animals</topic><topic>Behavioral Sciences</topic><topic>Biological Psychology</topic><topic>Catecholamine</topic><topic>Catecholamines</topic><topic>Catecholamines - metabolism</topic><topic>Cell regulation</topic><topic>Cells, Cultured</topic><topic>Chromaffin cells</topic><topic>Chromaffin Cells - drug effects</topic><topic>Chromaffin Cells - metabolism</topic><topic>Cyanoacrylates - pharmacology</topic><topic>Dynamin</topic><topic>Dynamins - antagonists &amp; inhibitors</topic><topic>Dynamins - metabolism</topic><topic>Electrical measurement</topic><topic>Exocytosis</topic><topic>Exocytosis - drug effects</topic><topic>Exocytosis - physiology</topic><topic>Feet</topic><topic>Fluorescence</topic><topic>GTPases</topic><topic>Guanosine triphosphatases</topic><topic>Hormones</topic><topic>Hydrazones - pharmacology</topic><topic>immediate-communication</topic><topic>Indoles - pharmacology</topic><topic>Inhibitors</topic><topic>Kinetics</topic><topic>Lipids</topic><topic>Male</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Membrane fusion</topic><topic>Mice, Inbred C57BL</topic><topic>Microscopy, Fluorescence</topic><topic>Mutation</topic><topic>Myosin</topic><topic>Naphthols - pharmacology</topic><topic>Neurological research</topic><topic>Neuromodulation</topic><topic>Neuropeptide Y</topic><topic>Neuropeptide Y - metabolism</topic><topic>Neuropeptides</topic><topic>Neurosciences</topic><topic>Neurotransmitter release</topic><topic>Neurotransmitters</topic><topic>Pharmacotherapy</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Plasma</topic><topic>Polymerization</topic><topic>Proteins</topic><topic>Psychiatry</topic><topic>Research centers</topic><topic>Secretory Vesicles - drug effects</topic><topic>Secretory Vesicles - metabolism</topic><topic>Synaptic vesicles</topic><topic>Transmitters</topic><topic>Tyrphostins - pharmacology</topic><topic>Vesicle fusion</topic><topic>Vesicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jackson, J</creatorcontrib><creatorcontrib>Papadopulos, A</creatorcontrib><creatorcontrib>Meunier, F A</creatorcontrib><creatorcontrib>McCluskey, A</creatorcontrib><creatorcontrib>Robinson, P J</creatorcontrib><creatorcontrib>Keating, D J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular psychiatry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jackson, J</au><au>Papadopulos, A</au><au>Meunier, F A</au><au>McCluskey, A</au><au>Robinson, P J</au><au>Keating, D J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small molecules demonstrate the role of dynamin as a bi-directional regulator of the exocytosis fusion pore and vesicle release</atitle><jtitle>Molecular psychiatry</jtitle><stitle>Mol Psychiatry</stitle><addtitle>Mol Psychiatry</addtitle><date>2015-07-01</date><risdate>2015</risdate><volume>20</volume><issue>7</issue><spage>810</spage><epage>819</epage><pages>810-819</pages><issn>1359-4184</issn><eissn>1476-5578</eissn><abstract>Hormones and neurotransmitters are stored in specialised vesicles and released from excitable cells through exocytosis. During vesicle fusion with the plasma membrane, a transient fusion pore is created that enables transmitter release. The protein dynamin is known to regulate fusion pore expansion (FPE). The mechanism is unknown, but requires its oligomerisation-stimulated GTPase activity. We used a palette of small molecule dynamin modulators to reveal bi-directional regulation of FPE by dynamin and vesicle release in chromaffin cells. The dynamin inhibitors Dynole 34-2 and Dyngo 4a and the dynamin activator Ryngo 1-23 reduced or increased catecholamine released from single vesicles, respectively. Total internal reflection fluorescence (TIRF) microscopy demonstrated that dynamin stimulation with Ryngo 1-23 reduced the number of neuropeptide Y (NPY) kiss-and-run events, but not full fusion events, and slowed full fusion release kinetics. Amperometric stand-alone foot signals, representing transient kiss-and-run events, were less frequent but were of longer duration, similarly to full amperometric spikes and pre-spike foot signals. These effects are not due to alterations in vesicle size. Ryngo 1-23 action was blocked by inhibitors of actin polymerisation or myosin II. Therefore, we demonstrate using a novel pharmacological approach that dynamin not only controls FPE during exocytosis, but is a bi-directional modulator of the fusion pore that increases or decreases the amount released from a vesicle during exocytosis if it is activated or inhibited, respectively. As such, dynamin has the ability to exquisitely fine-tune transmitter release.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25939402</pmid><doi>10.1038/mp.2015.56</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1359-4184
ispartof Molecular psychiatry, 2015-07, Vol.20 (7), p.810-819
issn 1359-4184
1476-5578
language eng
recordid cdi_proquest_miscellaneous_1701478787
source MEDLINE; SpringerLink Journals
subjects 14/63
631/378
631/443
Actin
Animals
Behavioral Sciences
Biological Psychology
Catecholamine
Catecholamines
Catecholamines - metabolism
Cell regulation
Cells, Cultured
Chromaffin cells
Chromaffin Cells - drug effects
Chromaffin Cells - metabolism
Cyanoacrylates - pharmacology
Dynamin
Dynamins - antagonists & inhibitors
Dynamins - metabolism
Electrical measurement
Exocytosis
Exocytosis - drug effects
Exocytosis - physiology
Feet
Fluorescence
GTPases
Guanosine triphosphatases
Hormones
Hydrazones - pharmacology
immediate-communication
Indoles - pharmacology
Inhibitors
Kinetics
Lipids
Male
Medical research
Medicine
Medicine & Public Health
Membrane fusion
Mice, Inbred C57BL
Microscopy, Fluorescence
Mutation
Myosin
Naphthols - pharmacology
Neurological research
Neuromodulation
Neuropeptide Y
Neuropeptide Y - metabolism
Neuropeptides
Neurosciences
Neurotransmitter release
Neurotransmitters
Pharmacotherapy
Physiological aspects
Physiology
Plasma
Polymerization
Proteins
Psychiatry
Research centers
Secretory Vesicles - drug effects
Secretory Vesicles - metabolism
Synaptic vesicles
Transmitters
Tyrphostins - pharmacology
Vesicle fusion
Vesicles
title Small molecules demonstrate the role of dynamin as a bi-directional regulator of the exocytosis fusion pore and vesicle release
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A44%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small%20molecules%20demonstrate%20the%20role%20of%20dynamin%20as%20a%20bi-directional%20regulator%20of%20the%20exocytosis%20fusion%20pore%20and%20vesicle%20release&rft.jtitle=Molecular%20psychiatry&rft.au=Jackson,%20J&rft.date=2015-07-01&rft.volume=20&rft.issue=7&rft.spage=810&rft.epage=819&rft.pages=810-819&rft.issn=1359-4184&rft.eissn=1476-5578&rft_id=info:doi/10.1038/mp.2015.56&rft_dat=%3Cgale_proqu%3EA420436102%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1690239395&rft_id=info:pmid/25939402&rft_galeid=A420436102&rfr_iscdi=true