Small molecules demonstrate the role of dynamin as a bi-directional regulator of the exocytosis fusion pore and vesicle release
Hormones and neurotransmitters are stored in specialised vesicles and released from excitable cells through exocytosis. During vesicle fusion with the plasma membrane, a transient fusion pore is created that enables transmitter release. The protein dynamin is known to regulate fusion pore expansion...
Gespeichert in:
Veröffentlicht in: | Molecular psychiatry 2015-07, Vol.20 (7), p.810-819 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 819 |
---|---|
container_issue | 7 |
container_start_page | 810 |
container_title | Molecular psychiatry |
container_volume | 20 |
creator | Jackson, J Papadopulos, A Meunier, F A McCluskey, A Robinson, P J Keating, D J |
description | Hormones and neurotransmitters are stored in specialised vesicles and released from excitable cells through exocytosis. During vesicle fusion with the plasma membrane, a transient fusion pore is created that enables transmitter release. The protein dynamin is known to regulate fusion pore expansion (FPE). The mechanism is unknown, but requires its oligomerisation-stimulated GTPase activity. We used a palette of small molecule dynamin modulators to reveal bi-directional regulation of FPE by dynamin and vesicle release in chromaffin cells. The dynamin inhibitors Dynole 34-2 and Dyngo 4a and the dynamin activator Ryngo 1-23 reduced or increased catecholamine released from single vesicles, respectively. Total internal reflection fluorescence (TIRF) microscopy demonstrated that dynamin stimulation with Ryngo 1-23 reduced the number of neuropeptide Y (NPY) kiss-and-run events, but not full fusion events, and slowed full fusion release kinetics. Amperometric stand-alone foot signals, representing transient kiss-and-run events, were less frequent but were of longer duration, similarly to full amperometric spikes and pre-spike foot signals. These effects are not due to alterations in vesicle size. Ryngo 1-23 action was blocked by inhibitors of actin polymerisation or myosin II. Therefore, we demonstrate using a novel pharmacological approach that dynamin not only controls FPE during exocytosis, but is a bi-directional modulator of the fusion pore that increases or decreases the amount released from a vesicle during exocytosis if it is activated or inhibited, respectively. As such, dynamin has the ability to exquisitely fine-tune transmitter release. |
doi_str_mv | 10.1038/mp.2015.56 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701478787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A420436102</galeid><sourcerecordid>A420436102</sourcerecordid><originalsourceid>FETCH-LOGICAL-c651t-81a54a68577cde258b5a3af039044aab7d46e3a10235d3ec64b4ffbbd3cd42f23</originalsourceid><addsrcrecordid>eNqFkkuLFDEQx4Mo7jp68QNIwIsoPebdPcdlWR-w4EE9h3RSGbOkO23SvTin_eqmmfUtSh0SUr_6p14IPaZkSwnvXg7TlhEqt1LdQadUtKqRsu3u1juXu0bQTpygB6VcEbI65X10wuSO7wRhp-jm_WBixEOKYJcIBTsY0ljmbGbA8yfAuXpw8tgdRjOEEZuCDe5D40IGO4c0mogz7Jdo5pRXcA2CL8ke5lRCwX4pFcJTyoDN6PA1lGCrZIYIpsBDdM-bWODR7blBH19dfDh_01y-e_32_OyysUrSuemokcKoTratdcBk10vDjSd8R4Qwpm-dUMANJYxLx8Eq0Qvv-95x6wTzjG_Qs6PulNPnBcqsh1AsxGhGSEvRtF2b01X7P6p2tMKkXdGnv6FXacm1JUUzzqliSpHuX1TVqinXYcgf1N5E0GH0qQ7Brl_rM8GI4GqtboO2f6Gq1bkFm0bwob7_EvD8GGBzKiWD11MOg8kHTYle10cPk17XR0tV4Se3mS79AO47-m1fKvDiCJTqGveQfyrlT7mvofPMlQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1690239395</pqid></control><display><type>article</type><title>Small molecules demonstrate the role of dynamin as a bi-directional regulator of the exocytosis fusion pore and vesicle release</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Jackson, J ; Papadopulos, A ; Meunier, F A ; McCluskey, A ; Robinson, P J ; Keating, D J</creator><creatorcontrib>Jackson, J ; Papadopulos, A ; Meunier, F A ; McCluskey, A ; Robinson, P J ; Keating, D J</creatorcontrib><description>Hormones and neurotransmitters are stored in specialised vesicles and released from excitable cells through exocytosis. During vesicle fusion with the plasma membrane, a transient fusion pore is created that enables transmitter release. The protein dynamin is known to regulate fusion pore expansion (FPE). The mechanism is unknown, but requires its oligomerisation-stimulated GTPase activity. We used a palette of small molecule dynamin modulators to reveal bi-directional regulation of FPE by dynamin and vesicle release in chromaffin cells. The dynamin inhibitors Dynole 34-2 and Dyngo 4a and the dynamin activator Ryngo 1-23 reduced or increased catecholamine released from single vesicles, respectively. Total internal reflection fluorescence (TIRF) microscopy demonstrated that dynamin stimulation with Ryngo 1-23 reduced the number of neuropeptide Y (NPY) kiss-and-run events, but not full fusion events, and slowed full fusion release kinetics. Amperometric stand-alone foot signals, representing transient kiss-and-run events, were less frequent but were of longer duration, similarly to full amperometric spikes and pre-spike foot signals. These effects are not due to alterations in vesicle size. Ryngo 1-23 action was blocked by inhibitors of actin polymerisation or myosin II. Therefore, we demonstrate using a novel pharmacological approach that dynamin not only controls FPE during exocytosis, but is a bi-directional modulator of the fusion pore that increases or decreases the amount released from a vesicle during exocytosis if it is activated or inhibited, respectively. As such, dynamin has the ability to exquisitely fine-tune transmitter release.</description><identifier>ISSN: 1359-4184</identifier><identifier>EISSN: 1476-5578</identifier><identifier>DOI: 10.1038/mp.2015.56</identifier><identifier>PMID: 25939402</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14/63 ; 631/378 ; 631/443 ; Actin ; Animals ; Behavioral Sciences ; Biological Psychology ; Catecholamine ; Catecholamines ; Catecholamines - metabolism ; Cell regulation ; Cells, Cultured ; Chromaffin cells ; Chromaffin Cells - drug effects ; Chromaffin Cells - metabolism ; Cyanoacrylates - pharmacology ; Dynamin ; Dynamins - antagonists & inhibitors ; Dynamins - metabolism ; Electrical measurement ; Exocytosis ; Exocytosis - drug effects ; Exocytosis - physiology ; Feet ; Fluorescence ; GTPases ; Guanosine triphosphatases ; Hormones ; Hydrazones - pharmacology ; immediate-communication ; Indoles - pharmacology ; Inhibitors ; Kinetics ; Lipids ; Male ; Medical research ; Medicine ; Medicine & Public Health ; Membrane fusion ; Mice, Inbred C57BL ; Microscopy, Fluorescence ; Mutation ; Myosin ; Naphthols - pharmacology ; Neurological research ; Neuromodulation ; Neuropeptide Y ; Neuropeptide Y - metabolism ; Neuropeptides ; Neurosciences ; Neurotransmitter release ; Neurotransmitters ; Pharmacotherapy ; Physiological aspects ; Physiology ; Plasma ; Polymerization ; Proteins ; Psychiatry ; Research centers ; Secretory Vesicles - drug effects ; Secretory Vesicles - metabolism ; Synaptic vesicles ; Transmitters ; Tyrphostins - pharmacology ; Vesicle fusion ; Vesicles</subject><ispartof>Molecular psychiatry, 2015-07, Vol.20 (7), p.810-819</ispartof><rights>Macmillan Publishers Limited 2015</rights><rights>COPYRIGHT 2015 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jul 2015</rights><rights>Macmillan Publishers Limited 2015.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c651t-81a54a68577cde258b5a3af039044aab7d46e3a10235d3ec64b4ffbbd3cd42f23</citedby><cites>FETCH-LOGICAL-c651t-81a54a68577cde258b5a3af039044aab7d46e3a10235d3ec64b4ffbbd3cd42f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/mp.2015.56$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/mp.2015.56$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25939402$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jackson, J</creatorcontrib><creatorcontrib>Papadopulos, A</creatorcontrib><creatorcontrib>Meunier, F A</creatorcontrib><creatorcontrib>McCluskey, A</creatorcontrib><creatorcontrib>Robinson, P J</creatorcontrib><creatorcontrib>Keating, D J</creatorcontrib><title>Small molecules demonstrate the role of dynamin as a bi-directional regulator of the exocytosis fusion pore and vesicle release</title><title>Molecular psychiatry</title><addtitle>Mol Psychiatry</addtitle><addtitle>Mol Psychiatry</addtitle><description>Hormones and neurotransmitters are stored in specialised vesicles and released from excitable cells through exocytosis. During vesicle fusion with the plasma membrane, a transient fusion pore is created that enables transmitter release. The protein dynamin is known to regulate fusion pore expansion (FPE). The mechanism is unknown, but requires its oligomerisation-stimulated GTPase activity. We used a palette of small molecule dynamin modulators to reveal bi-directional regulation of FPE by dynamin and vesicle release in chromaffin cells. The dynamin inhibitors Dynole 34-2 and Dyngo 4a and the dynamin activator Ryngo 1-23 reduced or increased catecholamine released from single vesicles, respectively. Total internal reflection fluorescence (TIRF) microscopy demonstrated that dynamin stimulation with Ryngo 1-23 reduced the number of neuropeptide Y (NPY) kiss-and-run events, but not full fusion events, and slowed full fusion release kinetics. Amperometric stand-alone foot signals, representing transient kiss-and-run events, were less frequent but were of longer duration, similarly to full amperometric spikes and pre-spike foot signals. These effects are not due to alterations in vesicle size. Ryngo 1-23 action was blocked by inhibitors of actin polymerisation or myosin II. Therefore, we demonstrate using a novel pharmacological approach that dynamin not only controls FPE during exocytosis, but is a bi-directional modulator of the fusion pore that increases or decreases the amount released from a vesicle during exocytosis if it is activated or inhibited, respectively. As such, dynamin has the ability to exquisitely fine-tune transmitter release.</description><subject>14/63</subject><subject>631/378</subject><subject>631/443</subject><subject>Actin</subject><subject>Animals</subject><subject>Behavioral Sciences</subject><subject>Biological Psychology</subject><subject>Catecholamine</subject><subject>Catecholamines</subject><subject>Catecholamines - metabolism</subject><subject>Cell regulation</subject><subject>Cells, Cultured</subject><subject>Chromaffin cells</subject><subject>Chromaffin Cells - drug effects</subject><subject>Chromaffin Cells - metabolism</subject><subject>Cyanoacrylates - pharmacology</subject><subject>Dynamin</subject><subject>Dynamins - antagonists & inhibitors</subject><subject>Dynamins - metabolism</subject><subject>Electrical measurement</subject><subject>Exocytosis</subject><subject>Exocytosis - drug effects</subject><subject>Exocytosis - physiology</subject><subject>Feet</subject><subject>Fluorescence</subject><subject>GTPases</subject><subject>Guanosine triphosphatases</subject><subject>Hormones</subject><subject>Hydrazones - pharmacology</subject><subject>immediate-communication</subject><subject>Indoles - pharmacology</subject><subject>Inhibitors</subject><subject>Kinetics</subject><subject>Lipids</subject><subject>Male</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Membrane fusion</subject><subject>Mice, Inbred C57BL</subject><subject>Microscopy, Fluorescence</subject><subject>Mutation</subject><subject>Myosin</subject><subject>Naphthols - pharmacology</subject><subject>Neurological research</subject><subject>Neuromodulation</subject><subject>Neuropeptide Y</subject><subject>Neuropeptide Y - metabolism</subject><subject>Neuropeptides</subject><subject>Neurosciences</subject><subject>Neurotransmitter release</subject><subject>Neurotransmitters</subject><subject>Pharmacotherapy</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Plasma</subject><subject>Polymerization</subject><subject>Proteins</subject><subject>Psychiatry</subject><subject>Research centers</subject><subject>Secretory Vesicles - drug effects</subject><subject>Secretory Vesicles - metabolism</subject><subject>Synaptic vesicles</subject><subject>Transmitters</subject><subject>Tyrphostins - pharmacology</subject><subject>Vesicle fusion</subject><subject>Vesicles</subject><issn>1359-4184</issn><issn>1476-5578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkkuLFDEQx4Mo7jp68QNIwIsoPebdPcdlWR-w4EE9h3RSGbOkO23SvTin_eqmmfUtSh0SUr_6p14IPaZkSwnvXg7TlhEqt1LdQadUtKqRsu3u1juXu0bQTpygB6VcEbI65X10wuSO7wRhp-jm_WBixEOKYJcIBTsY0ljmbGbA8yfAuXpw8tgdRjOEEZuCDe5D40IGO4c0mogz7Jdo5pRXcA2CL8ke5lRCwX4pFcJTyoDN6PA1lGCrZIYIpsBDdM-bWODR7blBH19dfDh_01y-e_32_OyysUrSuemokcKoTratdcBk10vDjSd8R4Qwpm-dUMANJYxLx8Eq0Qvv-95x6wTzjG_Qs6PulNPnBcqsh1AsxGhGSEvRtF2b01X7P6p2tMKkXdGnv6FXacm1JUUzzqliSpHuX1TVqinXYcgf1N5E0GH0qQ7Brl_rM8GI4GqtboO2f6Gq1bkFm0bwob7_EvD8GGBzKiWD11MOg8kHTYle10cPk17XR0tV4Se3mS79AO47-m1fKvDiCJTqGveQfyrlT7mvofPMlQ</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Jackson, J</creator><creator>Papadopulos, A</creator><creator>Meunier, F A</creator><creator>McCluskey, A</creator><creator>Robinson, P J</creator><creator>Keating, D J</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20150701</creationdate><title>Small molecules demonstrate the role of dynamin as a bi-directional regulator of the exocytosis fusion pore and vesicle release</title><author>Jackson, J ; Papadopulos, A ; Meunier, F A ; McCluskey, A ; Robinson, P J ; Keating, D J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c651t-81a54a68577cde258b5a3af039044aab7d46e3a10235d3ec64b4ffbbd3cd42f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>14/63</topic><topic>631/378</topic><topic>631/443</topic><topic>Actin</topic><topic>Animals</topic><topic>Behavioral Sciences</topic><topic>Biological Psychology</topic><topic>Catecholamine</topic><topic>Catecholamines</topic><topic>Catecholamines - metabolism</topic><topic>Cell regulation</topic><topic>Cells, Cultured</topic><topic>Chromaffin cells</topic><topic>Chromaffin Cells - drug effects</topic><topic>Chromaffin Cells - metabolism</topic><topic>Cyanoacrylates - pharmacology</topic><topic>Dynamin</topic><topic>Dynamins - antagonists & inhibitors</topic><topic>Dynamins - metabolism</topic><topic>Electrical measurement</topic><topic>Exocytosis</topic><topic>Exocytosis - drug effects</topic><topic>Exocytosis - physiology</topic><topic>Feet</topic><topic>Fluorescence</topic><topic>GTPases</topic><topic>Guanosine triphosphatases</topic><topic>Hormones</topic><topic>Hydrazones - pharmacology</topic><topic>immediate-communication</topic><topic>Indoles - pharmacology</topic><topic>Inhibitors</topic><topic>Kinetics</topic><topic>Lipids</topic><topic>Male</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Membrane fusion</topic><topic>Mice, Inbred C57BL</topic><topic>Microscopy, Fluorescence</topic><topic>Mutation</topic><topic>Myosin</topic><topic>Naphthols - pharmacology</topic><topic>Neurological research</topic><topic>Neuromodulation</topic><topic>Neuropeptide Y</topic><topic>Neuropeptide Y - metabolism</topic><topic>Neuropeptides</topic><topic>Neurosciences</topic><topic>Neurotransmitter release</topic><topic>Neurotransmitters</topic><topic>Pharmacotherapy</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Plasma</topic><topic>Polymerization</topic><topic>Proteins</topic><topic>Psychiatry</topic><topic>Research centers</topic><topic>Secretory Vesicles - drug effects</topic><topic>Secretory Vesicles - metabolism</topic><topic>Synaptic vesicles</topic><topic>Transmitters</topic><topic>Tyrphostins - pharmacology</topic><topic>Vesicle fusion</topic><topic>Vesicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jackson, J</creatorcontrib><creatorcontrib>Papadopulos, A</creatorcontrib><creatorcontrib>Meunier, F A</creatorcontrib><creatorcontrib>McCluskey, A</creatorcontrib><creatorcontrib>Robinson, P J</creatorcontrib><creatorcontrib>Keating, D J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular psychiatry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jackson, J</au><au>Papadopulos, A</au><au>Meunier, F A</au><au>McCluskey, A</au><au>Robinson, P J</au><au>Keating, D J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small molecules demonstrate the role of dynamin as a bi-directional regulator of the exocytosis fusion pore and vesicle release</atitle><jtitle>Molecular psychiatry</jtitle><stitle>Mol Psychiatry</stitle><addtitle>Mol Psychiatry</addtitle><date>2015-07-01</date><risdate>2015</risdate><volume>20</volume><issue>7</issue><spage>810</spage><epage>819</epage><pages>810-819</pages><issn>1359-4184</issn><eissn>1476-5578</eissn><abstract>Hormones and neurotransmitters are stored in specialised vesicles and released from excitable cells through exocytosis. During vesicle fusion with the plasma membrane, a transient fusion pore is created that enables transmitter release. The protein dynamin is known to regulate fusion pore expansion (FPE). The mechanism is unknown, but requires its oligomerisation-stimulated GTPase activity. We used a palette of small molecule dynamin modulators to reveal bi-directional regulation of FPE by dynamin and vesicle release in chromaffin cells. The dynamin inhibitors Dynole 34-2 and Dyngo 4a and the dynamin activator Ryngo 1-23 reduced or increased catecholamine released from single vesicles, respectively. Total internal reflection fluorescence (TIRF) microscopy demonstrated that dynamin stimulation with Ryngo 1-23 reduced the number of neuropeptide Y (NPY) kiss-and-run events, but not full fusion events, and slowed full fusion release kinetics. Amperometric stand-alone foot signals, representing transient kiss-and-run events, were less frequent but were of longer duration, similarly to full amperometric spikes and pre-spike foot signals. These effects are not due to alterations in vesicle size. Ryngo 1-23 action was blocked by inhibitors of actin polymerisation or myosin II. Therefore, we demonstrate using a novel pharmacological approach that dynamin not only controls FPE during exocytosis, but is a bi-directional modulator of the fusion pore that increases or decreases the amount released from a vesicle during exocytosis if it is activated or inhibited, respectively. As such, dynamin has the ability to exquisitely fine-tune transmitter release.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25939402</pmid><doi>10.1038/mp.2015.56</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-4184 |
ispartof | Molecular psychiatry, 2015-07, Vol.20 (7), p.810-819 |
issn | 1359-4184 1476-5578 |
language | eng |
recordid | cdi_proquest_miscellaneous_1701478787 |
source | MEDLINE; SpringerLink Journals |
subjects | 14/63 631/378 631/443 Actin Animals Behavioral Sciences Biological Psychology Catecholamine Catecholamines Catecholamines - metabolism Cell regulation Cells, Cultured Chromaffin cells Chromaffin Cells - drug effects Chromaffin Cells - metabolism Cyanoacrylates - pharmacology Dynamin Dynamins - antagonists & inhibitors Dynamins - metabolism Electrical measurement Exocytosis Exocytosis - drug effects Exocytosis - physiology Feet Fluorescence GTPases Guanosine triphosphatases Hormones Hydrazones - pharmacology immediate-communication Indoles - pharmacology Inhibitors Kinetics Lipids Male Medical research Medicine Medicine & Public Health Membrane fusion Mice, Inbred C57BL Microscopy, Fluorescence Mutation Myosin Naphthols - pharmacology Neurological research Neuromodulation Neuropeptide Y Neuropeptide Y - metabolism Neuropeptides Neurosciences Neurotransmitter release Neurotransmitters Pharmacotherapy Physiological aspects Physiology Plasma Polymerization Proteins Psychiatry Research centers Secretory Vesicles - drug effects Secretory Vesicles - metabolism Synaptic vesicles Transmitters Tyrphostins - pharmacology Vesicle fusion Vesicles |
title | Small molecules demonstrate the role of dynamin as a bi-directional regulator of the exocytosis fusion pore and vesicle release |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A44%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small%20molecules%20demonstrate%20the%20role%20of%20dynamin%20as%20a%20bi-directional%20regulator%20of%20the%20exocytosis%20fusion%20pore%20and%20vesicle%20release&rft.jtitle=Molecular%20psychiatry&rft.au=Jackson,%20J&rft.date=2015-07-01&rft.volume=20&rft.issue=7&rft.spage=810&rft.epage=819&rft.pages=810-819&rft.issn=1359-4184&rft.eissn=1476-5578&rft_id=info:doi/10.1038/mp.2015.56&rft_dat=%3Cgale_proqu%3EA420436102%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1690239395&rft_id=info:pmid/25939402&rft_galeid=A420436102&rfr_iscdi=true |