Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells

The efficiency of precise CRISPR/Cas9 genome editing is increased by inhibition of the nonhomologous end joining pathway. The insertion of precise genetic modifications by genome editing tools such as CRISPR-Cas9 is limited by the relatively low efficiency of homology-directed repair (HDR) compared...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature biotechnology 2015-05, Vol.33 (5), p.543-548
Hauptverfasser: Chu, Van Trung, Weber, Timm, Wefers, Benedikt, Wurst, Wolfgang, Sander, Sandrine, Rajewsky, Klaus, Kühn, Ralf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 548
container_issue 5
container_start_page 543
container_title Nature biotechnology
container_volume 33
creator Chu, Van Trung
Weber, Timm
Wefers, Benedikt
Wurst, Wolfgang
Sander, Sandrine
Rajewsky, Klaus
Kühn, Ralf
description The efficiency of precise CRISPR/Cas9 genome editing is increased by inhibition of the nonhomologous end joining pathway. The insertion of precise genetic modifications by genome editing tools such as CRISPR-Cas9 is limited by the relatively low efficiency of homology-directed repair (HDR) compared with the higher efficiency of the nonhomologous end-joining (NHEJ) pathway. To enhance HDR, enabling the insertion of precise genetic modifications, we suppressed the NHEJ key molecules KU70, KU80 or DNA ligase IV by gene silencing, the ligase IV inhibitor SCR7 or the coexpression of adenovirus 4 E1B55K and E4orf6 proteins in a 'traffic light' and other reporter systems. Suppression of KU70 and DNA ligase IV promotes the efficiency of HDR 4–5-fold. When co-expressed with the Cas9 system, E1B55K and E4orf6 improved the efficiency of HDR up to eightfold and essentially abolished NHEJ activity in both human and mouse cell lines. Our findings provide useful tools to improve the frequency of precise gene modifications in mammalian cells.
doi_str_mv 10.1038/nbt.3198
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701478502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A415562308</galeid><sourcerecordid>A415562308</sourcerecordid><originalsourceid>FETCH-LOGICAL-c616t-e02c0cd2c1fb67a5b1cba7dd018e0b435912abd634ee8a52b9b7034d4276647d3</originalsourceid><addsrcrecordid>eNqNkl1rFDEUhgdRbK2Cv0AC3lRw1mQyycxclsWPhUJlq96GfJyZTZlJ1iQD7r83a1fbLYISSELO876cHN6ieEnwgmDavnMqLSjp2kfFKWE1Lwnv-ON8x21TYsL4SfEsxhuMMa85f1qcVKzFlGJ-WswrpwPIaN2A0gYQ9L3VFpzeId-jjZ_86IddaWwAncCgAFtpA-p9QMv16vrzulzK2JXWmVnn8jZjNgIawGUvY9Pe1zo0yWmSo5UOaRjH-Lx40ssxwovDeVZ8_fD-y_JTeXn1cbW8uCw1JzyVgCuNtak06RVvJFNEK9kYg0kLWNWUdaSSynBaA7SSVapTDaa1qauG87ox9Kw4v_XdBv99hpjEZOO-A-nAz1GQBpO6aRmu_o3yFncsk11GXz9Ab_wcXP7IL6qmFaH0jhrkCMK63qcg9d5UXNSEMV5R3GZq8RcqLwOT1d5Bb_P7keDNkSAzCX6kQc4xitX1-v_Zq2_H7Nt7rJpzIiDmLdphk-Kt5Ag_jEsHH2OAXmyDnWTYCYLFPpMiZ1LsM5nRV4dxzWoC8wf8HcK7NmMuuQHCvXk-NPsJ-BblsA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1680432133</pqid></control><display><type>article</type><title>Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Chu, Van Trung ; Weber, Timm ; Wefers, Benedikt ; Wurst, Wolfgang ; Sander, Sandrine ; Rajewsky, Klaus ; Kühn, Ralf</creator><creatorcontrib>Chu, Van Trung ; Weber, Timm ; Wefers, Benedikt ; Wurst, Wolfgang ; Sander, Sandrine ; Rajewsky, Klaus ; Kühn, Ralf</creatorcontrib><description>The efficiency of precise CRISPR/Cas9 genome editing is increased by inhibition of the nonhomologous end joining pathway. The insertion of precise genetic modifications by genome editing tools such as CRISPR-Cas9 is limited by the relatively low efficiency of homology-directed repair (HDR) compared with the higher efficiency of the nonhomologous end-joining (NHEJ) pathway. To enhance HDR, enabling the insertion of precise genetic modifications, we suppressed the NHEJ key molecules KU70, KU80 or DNA ligase IV by gene silencing, the ligase IV inhibitor SCR7 or the coexpression of adenovirus 4 E1B55K and E4orf6 proteins in a 'traffic light' and other reporter systems. Suppression of KU70 and DNA ligase IV promotes the efficiency of HDR 4–5-fold. When co-expressed with the Cas9 system, E1B55K and E4orf6 improved the efficiency of HDR up to eightfold and essentially abolished NHEJ activity in both human and mouse cell lines. Our findings provide useful tools to improve the frequency of precise gene modifications in mammalian cells.</description><identifier>ISSN: 1087-0156</identifier><identifier>EISSN: 1546-1696</identifier><identifier>DOI: 10.1038/nbt.3198</identifier><identifier>PMID: 25803306</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/1647/1511 ; 631/1647/1513/1967/3196 ; 631/337/1427/2122 ; Adenoviridae - genetics ; Adenovirus ; Adenovirus E4 Proteins - biosynthesis ; Adenovirus E4 Proteins - genetics ; Agriculture ; Animals ; Bioinformatics ; Biomedical Engineering/Biotechnology ; Biomedicine ; Biotechnology ; Cell Line ; CRISPR-Cas Systems - genetics ; Deoxyribonucleic acid ; DNA ; DNA Breaks, Double-Stranded ; DNA End-Joining Repair - genetics ; DNA Ligase ATP ; DNA Ligases - genetics ; DNA repair ; Gene Expression Regulation ; Genetic engineering ; Genetic Engineering - methods ; Genetic research ; Genome, Human ; Homologous Recombination - genetics ; Humans ; Innovations ; letter ; Life Sciences ; Mammals ; Mice ; Viral Proteins - biosynthesis ; Viral Proteins - genetics</subject><ispartof>Nature biotechnology, 2015-05, Vol.33 (5), p.543-548</ispartof><rights>Springer Nature America, Inc. 2015</rights><rights>COPYRIGHT 2015 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group May 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c616t-e02c0cd2c1fb67a5b1cba7dd018e0b435912abd634ee8a52b9b7034d4276647d3</citedby><cites>FETCH-LOGICAL-c616t-e02c0cd2c1fb67a5b1cba7dd018e0b435912abd634ee8a52b9b7034d4276647d3</cites><orcidid>0000-0002-2492-9389 ; 0000000224929389</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nbt.3198$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nbt.3198$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25803306$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chu, Van Trung</creatorcontrib><creatorcontrib>Weber, Timm</creatorcontrib><creatorcontrib>Wefers, Benedikt</creatorcontrib><creatorcontrib>Wurst, Wolfgang</creatorcontrib><creatorcontrib>Sander, Sandrine</creatorcontrib><creatorcontrib>Rajewsky, Klaus</creatorcontrib><creatorcontrib>Kühn, Ralf</creatorcontrib><title>Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells</title><title>Nature biotechnology</title><addtitle>Nat Biotechnol</addtitle><addtitle>Nat Biotechnol</addtitle><description>The efficiency of precise CRISPR/Cas9 genome editing is increased by inhibition of the nonhomologous end joining pathway. The insertion of precise genetic modifications by genome editing tools such as CRISPR-Cas9 is limited by the relatively low efficiency of homology-directed repair (HDR) compared with the higher efficiency of the nonhomologous end-joining (NHEJ) pathway. To enhance HDR, enabling the insertion of precise genetic modifications, we suppressed the NHEJ key molecules KU70, KU80 or DNA ligase IV by gene silencing, the ligase IV inhibitor SCR7 or the coexpression of adenovirus 4 E1B55K and E4orf6 proteins in a 'traffic light' and other reporter systems. Suppression of KU70 and DNA ligase IV promotes the efficiency of HDR 4–5-fold. When co-expressed with the Cas9 system, E1B55K and E4orf6 improved the efficiency of HDR up to eightfold and essentially abolished NHEJ activity in both human and mouse cell lines. Our findings provide useful tools to improve the frequency of precise gene modifications in mammalian cells.</description><subject>631/1647/1511</subject><subject>631/1647/1513/1967/3196</subject><subject>631/337/1427/2122</subject><subject>Adenoviridae - genetics</subject><subject>Adenovirus</subject><subject>Adenovirus E4 Proteins - biosynthesis</subject><subject>Adenovirus E4 Proteins - genetics</subject><subject>Agriculture</subject><subject>Animals</subject><subject>Bioinformatics</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Cell Line</subject><subject>CRISPR-Cas Systems - genetics</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA End-Joining Repair - genetics</subject><subject>DNA Ligase ATP</subject><subject>DNA Ligases - genetics</subject><subject>DNA repair</subject><subject>Gene Expression Regulation</subject><subject>Genetic engineering</subject><subject>Genetic Engineering - methods</subject><subject>Genetic research</subject><subject>Genome, Human</subject><subject>Homologous Recombination - genetics</subject><subject>Humans</subject><subject>Innovations</subject><subject>letter</subject><subject>Life Sciences</subject><subject>Mammals</subject><subject>Mice</subject><subject>Viral Proteins - biosynthesis</subject><subject>Viral Proteins - genetics</subject><issn>1087-0156</issn><issn>1546-1696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>N95</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkl1rFDEUhgdRbK2Cv0AC3lRw1mQyycxclsWPhUJlq96GfJyZTZlJ1iQD7r83a1fbLYISSELO876cHN6ieEnwgmDavnMqLSjp2kfFKWE1Lwnv-ON8x21TYsL4SfEsxhuMMa85f1qcVKzFlGJ-WswrpwPIaN2A0gYQ9L3VFpzeId-jjZ_86IddaWwAncCgAFtpA-p9QMv16vrzulzK2JXWmVnn8jZjNgIawGUvY9Pe1zo0yWmSo5UOaRjH-Lx40ssxwovDeVZ8_fD-y_JTeXn1cbW8uCw1JzyVgCuNtak06RVvJFNEK9kYg0kLWNWUdaSSynBaA7SSVapTDaa1qauG87ox9Kw4v_XdBv99hpjEZOO-A-nAz1GQBpO6aRmu_o3yFncsk11GXz9Ab_wcXP7IL6qmFaH0jhrkCMK63qcg9d5UXNSEMV5R3GZq8RcqLwOT1d5Bb_P7keDNkSAzCX6kQc4xitX1-v_Zq2_H7Nt7rJpzIiDmLdphk-Kt5Ag_jEsHH2OAXmyDnWTYCYLFPpMiZ1LsM5nRV4dxzWoC8wf8HcK7NmMuuQHCvXk-NPsJ-BblsA</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Chu, Van Trung</creator><creator>Weber, Timm</creator><creator>Wefers, Benedikt</creator><creator>Wurst, Wolfgang</creator><creator>Sander, Sandrine</creator><creator>Rajewsky, Klaus</creator><creator>Kühn, Ralf</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2492-9389</orcidid><orcidid>https://orcid.org/0000000224929389</orcidid></search><sort><creationdate>20150501</creationdate><title>Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells</title><author>Chu, Van Trung ; Weber, Timm ; Wefers, Benedikt ; Wurst, Wolfgang ; Sander, Sandrine ; Rajewsky, Klaus ; Kühn, Ralf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c616t-e02c0cd2c1fb67a5b1cba7dd018e0b435912abd634ee8a52b9b7034d4276647d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>631/1647/1511</topic><topic>631/1647/1513/1967/3196</topic><topic>631/337/1427/2122</topic><topic>Adenoviridae - genetics</topic><topic>Adenovirus</topic><topic>Adenovirus E4 Proteins - biosynthesis</topic><topic>Adenovirus E4 Proteins - genetics</topic><topic>Agriculture</topic><topic>Animals</topic><topic>Bioinformatics</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Cell Line</topic><topic>CRISPR-Cas Systems - genetics</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA End-Joining Repair - genetics</topic><topic>DNA Ligase ATP</topic><topic>DNA Ligases - genetics</topic><topic>DNA repair</topic><topic>Gene Expression Regulation</topic><topic>Genetic engineering</topic><topic>Genetic Engineering - methods</topic><topic>Genetic research</topic><topic>Genome, Human</topic><topic>Homologous Recombination - genetics</topic><topic>Humans</topic><topic>Innovations</topic><topic>letter</topic><topic>Life Sciences</topic><topic>Mammals</topic><topic>Mice</topic><topic>Viral Proteins - biosynthesis</topic><topic>Viral Proteins - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chu, Van Trung</creatorcontrib><creatorcontrib>Weber, Timm</creatorcontrib><creatorcontrib>Wefers, Benedikt</creatorcontrib><creatorcontrib>Wurst, Wolfgang</creatorcontrib><creatorcontrib>Sander, Sandrine</creatorcontrib><creatorcontrib>Rajewsky, Klaus</creatorcontrib><creatorcontrib>Kühn, Ralf</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chu, Van Trung</au><au>Weber, Timm</au><au>Wefers, Benedikt</au><au>Wurst, Wolfgang</au><au>Sander, Sandrine</au><au>Rajewsky, Klaus</au><au>Kühn, Ralf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells</atitle><jtitle>Nature biotechnology</jtitle><stitle>Nat Biotechnol</stitle><addtitle>Nat Biotechnol</addtitle><date>2015-05-01</date><risdate>2015</risdate><volume>33</volume><issue>5</issue><spage>543</spage><epage>548</epage><pages>543-548</pages><issn>1087-0156</issn><eissn>1546-1696</eissn><abstract>The efficiency of precise CRISPR/Cas9 genome editing is increased by inhibition of the nonhomologous end joining pathway. The insertion of precise genetic modifications by genome editing tools such as CRISPR-Cas9 is limited by the relatively low efficiency of homology-directed repair (HDR) compared with the higher efficiency of the nonhomologous end-joining (NHEJ) pathway. To enhance HDR, enabling the insertion of precise genetic modifications, we suppressed the NHEJ key molecules KU70, KU80 or DNA ligase IV by gene silencing, the ligase IV inhibitor SCR7 or the coexpression of adenovirus 4 E1B55K and E4orf6 proteins in a 'traffic light' and other reporter systems. Suppression of KU70 and DNA ligase IV promotes the efficiency of HDR 4–5-fold. When co-expressed with the Cas9 system, E1B55K and E4orf6 improved the efficiency of HDR up to eightfold and essentially abolished NHEJ activity in both human and mouse cell lines. Our findings provide useful tools to improve the frequency of precise gene modifications in mammalian cells.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>25803306</pmid><doi>10.1038/nbt.3198</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-2492-9389</orcidid><orcidid>https://orcid.org/0000000224929389</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1087-0156
ispartof Nature biotechnology, 2015-05, Vol.33 (5), p.543-548
issn 1087-0156
1546-1696
language eng
recordid cdi_proquest_miscellaneous_1701478502
source MEDLINE; Nature; SpringerLink Journals - AutoHoldings
subjects 631/1647/1511
631/1647/1513/1967/3196
631/337/1427/2122
Adenoviridae - genetics
Adenovirus
Adenovirus E4 Proteins - biosynthesis
Adenovirus E4 Proteins - genetics
Agriculture
Animals
Bioinformatics
Biomedical Engineering/Biotechnology
Biomedicine
Biotechnology
Cell Line
CRISPR-Cas Systems - genetics
Deoxyribonucleic acid
DNA
DNA Breaks, Double-Stranded
DNA End-Joining Repair - genetics
DNA Ligase ATP
DNA Ligases - genetics
DNA repair
Gene Expression Regulation
Genetic engineering
Genetic Engineering - methods
Genetic research
Genome, Human
Homologous Recombination - genetics
Humans
Innovations
letter
Life Sciences
Mammals
Mice
Viral Proteins - biosynthesis
Viral Proteins - genetics
title Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T12%3A48%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Increasing%20the%20efficiency%20of%20homology-directed%20repair%20for%20CRISPR-Cas9-induced%20precise%20gene%20editing%20in%20mammalian%20cells&rft.jtitle=Nature%20biotechnology&rft.au=Chu,%20Van%20Trung&rft.date=2015-05-01&rft.volume=33&rft.issue=5&rft.spage=543&rft.epage=548&rft.pages=543-548&rft.issn=1087-0156&rft.eissn=1546-1696&rft_id=info:doi/10.1038/nbt.3198&rft_dat=%3Cgale_proqu%3EA415562308%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1680432133&rft_id=info:pmid/25803306&rft_galeid=A415562308&rfr_iscdi=true