Variability and Trends in U.S. Cloud Cover: ISCCP, PATMOS-x, and CLARA-A1 Compared to Homogeneity-Adjusted Weather Observations

Variability and trends in total cloud cover for 1982–2009 across the contiguous United States from the International Satellite Cloud Climatology Project (ISCCP), AVHRR Pathfinder Atmospheres–Extended (PATMOS-x), and EUMETSAT Satellite Application Facility on Climate Monitoring Clouds, Albedo and Rad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of climate 2015-06, Vol.28 (11), p.4373-4389
Hauptverfasser: Sun, Bomin, Free, Melissa, Yoo, Hye Lim, Foster, Michael J., Heidinger, Andrew, Karlsson, Karl-Göran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4389
container_issue 11
container_start_page 4373
container_title Journal of climate
container_volume 28
creator Sun, Bomin
Free, Melissa
Yoo, Hye Lim
Foster, Michael J.
Heidinger, Andrew
Karlsson, Karl-Göran
description Variability and trends in total cloud cover for 1982–2009 across the contiguous United States from the International Satellite Cloud Climatology Project (ISCCP), AVHRR Pathfinder Atmospheres–Extended (PATMOS-x), and EUMETSAT Satellite Application Facility on Climate Monitoring Clouds, Albedo and Radiation from AVHRR Data Edition 1 (CLARA-A1) satellite datasets are assessed using homogeneity-adjusted weather station data. The station data, considered as “ground truth” in the evaluation, are generally well correlated with the ISCCP and PATMOS-x data and with the physically related variables diurnal temperature range, precipitation, and surface solar radiation. Among the satellite products, overall, the PATMOS-x data have the highest interannual correlations with the weather station cloud data and those other physically related variables. The CLARA-A1 daytime dataset generally shows the lowest correlations, even after trends are removed. For the U.S. mean, the station dataset shows a negative but not statistically significant trend of −0.40% decade−1, and satellite products show larger downward trends ranging from −0.55% to −5.00% decade−1for 1984–2007. PATMOS-x 1330 local time trends for U.S. mean cloud cover are closest to those in the station data, followed by the PATMOS-x diurnally corrected dataset and ISCCP, with CLARA-A1 having a large negative trend contrasting strongly with the station data. These results tend to validate the usefulness of weather station cloud data for monitoring changes in cloud cover, and they show that the long-term stability of satellite cloud datasets can be assessed by comparison to homogeneity-adjusted station data and other physically related variables.
doi_str_mv 10.1175/JCLI-D-14-00805.1
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701476878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26195144</jstor_id><sourcerecordid>26195144</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-c8cec4e463bf61f7c96987645c5ecd6217850bcecc734b6cd6ff71dc6095194b3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFZ_gAch4EWEjTPJfh4l9aNS8GDrdUk2G0hJk7qbCP33plY8ePA0MDzP8M5LyCVCjCj53Uu2mNMZRUYBFPAYj8gEeQIUGEuOyQSUZlRJzk_JWQhrAEwEwITcvue-zou6qftdlLdltPSuLUNUt9EqfoujrOmGMsq6T-fPyUmVN8Fd_MwpWT0-LLNnunh9mmf3C2pTrXtqlXWWOSbSohJYSauFVlIwbrmzpUhQKg7FyFiZskKMq6qSWFoBmqNmRTolN4e7W999DC70ZlMH65omb103BIMSkEmhpBrR6z_ouht8O6YziULQCSb6XwrFGAZSIdKRwgNlfReCd5XZ-nqT-51BMPuOzb5jMzPIzHfHBkfn6uCsQ9_5XyEROP7CWPoFF8R1GA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1685003663</pqid></control><display><type>article</type><title>Variability and Trends in U.S. Cloud Cover: ISCCP, PATMOS-x, and CLARA-A1 Compared to Homogeneity-Adjusted Weather Observations</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Jstor Complete Legacy</source><creator>Sun, Bomin ; Free, Melissa ; Yoo, Hye Lim ; Foster, Michael J. ; Heidinger, Andrew ; Karlsson, Karl-Göran</creator><creatorcontrib>Sun, Bomin ; Free, Melissa ; Yoo, Hye Lim ; Foster, Michael J. ; Heidinger, Andrew ; Karlsson, Karl-Göran</creatorcontrib><description>Variability and trends in total cloud cover for 1982–2009 across the contiguous United States from the International Satellite Cloud Climatology Project (ISCCP), AVHRR Pathfinder Atmospheres–Extended (PATMOS-x), and EUMETSAT Satellite Application Facility on Climate Monitoring Clouds, Albedo and Radiation from AVHRR Data Edition 1 (CLARA-A1) satellite datasets are assessed using homogeneity-adjusted weather station data. The station data, considered as “ground truth” in the evaluation, are generally well correlated with the ISCCP and PATMOS-x data and with the physically related variables diurnal temperature range, precipitation, and surface solar radiation. Among the satellite products, overall, the PATMOS-x data have the highest interannual correlations with the weather station cloud data and those other physically related variables. The CLARA-A1 daytime dataset generally shows the lowest correlations, even after trends are removed. For the U.S. mean, the station dataset shows a negative but not statistically significant trend of −0.40% decade−1, and satellite products show larger downward trends ranging from −0.55% to −5.00% decade−1for 1984–2007. PATMOS-x 1330 local time trends for U.S. mean cloud cover are closest to those in the station data, followed by the PATMOS-x diurnally corrected dataset and ISCCP, with CLARA-A1 having a large negative trend contrasting strongly with the station data. These results tend to validate the usefulness of weather station cloud data for monitoring changes in cloud cover, and they show that the long-term stability of satellite cloud datasets can be assessed by comparison to homogeneity-adjusted station data and other physically related variables.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/JCLI-D-14-00805.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Advanced very high resolution radiometers ; Albedo ; Algorithms ; Archives &amp; records ; Climate change ; Climate cycles ; Climate monitoring ; Climatology ; Cloud albedo ; Cloud climatology ; Cloud cover ; Clouds ; Computer centers ; Correlation ; Correlations ; Daily temperatures ; Datasets ; Homogeneity ; Meteorological satellites ; Meteorology ; Monitoring ; Precipitation ; Radiation ; Radiation-cloud interactions ; Satellites ; Seasons ; Solar radiation ; Stability analysis ; Statistical analysis ; Time series ; Time zones ; Trends ; Variability ; Weather ; Weather station data ; Weather stations</subject><ispartof>Journal of climate, 2015-06, Vol.28 (11), p.4373-4389</ispartof><rights>2015 American Meteorological Society</rights><rights>Copyright American Meteorological Society Jun 1, 2015</rights><rights>Copyright American Meteorological Society 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-c8cec4e463bf61f7c96987645c5ecd6217850bcecc734b6cd6ff71dc6095194b3</citedby><cites>FETCH-LOGICAL-c399t-c8cec4e463bf61f7c96987645c5ecd6217850bcecc734b6cd6ff71dc6095194b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26195144$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26195144$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,800,3668,27905,27906,57998,58231</link.rule.ids></links><search><creatorcontrib>Sun, Bomin</creatorcontrib><creatorcontrib>Free, Melissa</creatorcontrib><creatorcontrib>Yoo, Hye Lim</creatorcontrib><creatorcontrib>Foster, Michael J.</creatorcontrib><creatorcontrib>Heidinger, Andrew</creatorcontrib><creatorcontrib>Karlsson, Karl-Göran</creatorcontrib><title>Variability and Trends in U.S. Cloud Cover: ISCCP, PATMOS-x, and CLARA-A1 Compared to Homogeneity-Adjusted Weather Observations</title><title>Journal of climate</title><description>Variability and trends in total cloud cover for 1982–2009 across the contiguous United States from the International Satellite Cloud Climatology Project (ISCCP), AVHRR Pathfinder Atmospheres–Extended (PATMOS-x), and EUMETSAT Satellite Application Facility on Climate Monitoring Clouds, Albedo and Radiation from AVHRR Data Edition 1 (CLARA-A1) satellite datasets are assessed using homogeneity-adjusted weather station data. The station data, considered as “ground truth” in the evaluation, are generally well correlated with the ISCCP and PATMOS-x data and with the physically related variables diurnal temperature range, precipitation, and surface solar radiation. Among the satellite products, overall, the PATMOS-x data have the highest interannual correlations with the weather station cloud data and those other physically related variables. The CLARA-A1 daytime dataset generally shows the lowest correlations, even after trends are removed. For the U.S. mean, the station dataset shows a negative but not statistically significant trend of −0.40% decade−1, and satellite products show larger downward trends ranging from −0.55% to −5.00% decade−1for 1984–2007. PATMOS-x 1330 local time trends for U.S. mean cloud cover are closest to those in the station data, followed by the PATMOS-x diurnally corrected dataset and ISCCP, with CLARA-A1 having a large negative trend contrasting strongly with the station data. These results tend to validate the usefulness of weather station cloud data for monitoring changes in cloud cover, and they show that the long-term stability of satellite cloud datasets can be assessed by comparison to homogeneity-adjusted station data and other physically related variables.</description><subject>Advanced very high resolution radiometers</subject><subject>Albedo</subject><subject>Algorithms</subject><subject>Archives &amp; records</subject><subject>Climate change</subject><subject>Climate cycles</subject><subject>Climate monitoring</subject><subject>Climatology</subject><subject>Cloud albedo</subject><subject>Cloud climatology</subject><subject>Cloud cover</subject><subject>Clouds</subject><subject>Computer centers</subject><subject>Correlation</subject><subject>Correlations</subject><subject>Daily temperatures</subject><subject>Datasets</subject><subject>Homogeneity</subject><subject>Meteorological satellites</subject><subject>Meteorology</subject><subject>Monitoring</subject><subject>Precipitation</subject><subject>Radiation</subject><subject>Radiation-cloud interactions</subject><subject>Satellites</subject><subject>Seasons</subject><subject>Solar radiation</subject><subject>Stability analysis</subject><subject>Statistical analysis</subject><subject>Time series</subject><subject>Time zones</subject><subject>Trends</subject><subject>Variability</subject><subject>Weather</subject><subject>Weather station data</subject><subject>Weather stations</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1Lw0AQhhdRsFZ_gAch4EWEjTPJfh4l9aNS8GDrdUk2G0hJk7qbCP33plY8ePA0MDzP8M5LyCVCjCj53Uu2mNMZRUYBFPAYj8gEeQIUGEuOyQSUZlRJzk_JWQhrAEwEwITcvue-zou6qftdlLdltPSuLUNUt9EqfoujrOmGMsq6T-fPyUmVN8Fd_MwpWT0-LLNnunh9mmf3C2pTrXtqlXWWOSbSohJYSauFVlIwbrmzpUhQKg7FyFiZskKMq6qSWFoBmqNmRTolN4e7W999DC70ZlMH65omb103BIMSkEmhpBrR6z_ouht8O6YziULQCSb6XwrFGAZSIdKRwgNlfReCd5XZ-nqT-51BMPuOzb5jMzPIzHfHBkfn6uCsQ9_5XyEROP7CWPoFF8R1GA</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Sun, Bomin</creator><creator>Free, Melissa</creator><creator>Yoo, Hye Lim</creator><creator>Foster, Michael J.</creator><creator>Heidinger, Andrew</creator><creator>Karlsson, Karl-Göran</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7X2</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M0K</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20150601</creationdate><title>Variability and Trends in U.S. Cloud Cover</title><author>Sun, Bomin ; Free, Melissa ; Yoo, Hye Lim ; Foster, Michael J. ; Heidinger, Andrew ; Karlsson, Karl-Göran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-c8cec4e463bf61f7c96987645c5ecd6217850bcecc734b6cd6ff71dc6095194b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Advanced very high resolution radiometers</topic><topic>Albedo</topic><topic>Algorithms</topic><topic>Archives &amp; records</topic><topic>Climate change</topic><topic>Climate cycles</topic><topic>Climate monitoring</topic><topic>Climatology</topic><topic>Cloud albedo</topic><topic>Cloud climatology</topic><topic>Cloud cover</topic><topic>Clouds</topic><topic>Computer centers</topic><topic>Correlation</topic><topic>Correlations</topic><topic>Daily temperatures</topic><topic>Datasets</topic><topic>Homogeneity</topic><topic>Meteorological satellites</topic><topic>Meteorology</topic><topic>Monitoring</topic><topic>Precipitation</topic><topic>Radiation</topic><topic>Radiation-cloud interactions</topic><topic>Satellites</topic><topic>Seasons</topic><topic>Solar radiation</topic><topic>Stability analysis</topic><topic>Statistical analysis</topic><topic>Time series</topic><topic>Time zones</topic><topic>Trends</topic><topic>Variability</topic><topic>Weather</topic><topic>Weather station data</topic><topic>Weather stations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Bomin</creatorcontrib><creatorcontrib>Free, Melissa</creatorcontrib><creatorcontrib>Yoo, Hye Lim</creatorcontrib><creatorcontrib>Foster, Michael J.</creatorcontrib><creatorcontrib>Heidinger, Andrew</creatorcontrib><creatorcontrib>Karlsson, Karl-Göran</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Agricultural Science Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Bomin</au><au>Free, Melissa</au><au>Yoo, Hye Lim</au><au>Foster, Michael J.</au><au>Heidinger, Andrew</au><au>Karlsson, Karl-Göran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variability and Trends in U.S. Cloud Cover: ISCCP, PATMOS-x, and CLARA-A1 Compared to Homogeneity-Adjusted Weather Observations</atitle><jtitle>Journal of climate</jtitle><date>2015-06-01</date><risdate>2015</risdate><volume>28</volume><issue>11</issue><spage>4373</spage><epage>4389</epage><pages>4373-4389</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>Variability and trends in total cloud cover for 1982–2009 across the contiguous United States from the International Satellite Cloud Climatology Project (ISCCP), AVHRR Pathfinder Atmospheres–Extended (PATMOS-x), and EUMETSAT Satellite Application Facility on Climate Monitoring Clouds, Albedo and Radiation from AVHRR Data Edition 1 (CLARA-A1) satellite datasets are assessed using homogeneity-adjusted weather station data. The station data, considered as “ground truth” in the evaluation, are generally well correlated with the ISCCP and PATMOS-x data and with the physically related variables diurnal temperature range, precipitation, and surface solar radiation. Among the satellite products, overall, the PATMOS-x data have the highest interannual correlations with the weather station cloud data and those other physically related variables. The CLARA-A1 daytime dataset generally shows the lowest correlations, even after trends are removed. For the U.S. mean, the station dataset shows a negative but not statistically significant trend of −0.40% decade−1, and satellite products show larger downward trends ranging from −0.55% to −5.00% decade−1for 1984–2007. PATMOS-x 1330 local time trends for U.S. mean cloud cover are closest to those in the station data, followed by the PATMOS-x diurnally corrected dataset and ISCCP, with CLARA-A1 having a large negative trend contrasting strongly with the station data. These results tend to validate the usefulness of weather station cloud data for monitoring changes in cloud cover, and they show that the long-term stability of satellite cloud datasets can be assessed by comparison to homogeneity-adjusted station data and other physically related variables.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JCLI-D-14-00805.1</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0894-8755
ispartof Journal of climate, 2015-06, Vol.28 (11), p.4373-4389
issn 0894-8755
1520-0442
language eng
recordid cdi_proquest_miscellaneous_1701476878
source American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Jstor Complete Legacy
subjects Advanced very high resolution radiometers
Albedo
Algorithms
Archives & records
Climate change
Climate cycles
Climate monitoring
Climatology
Cloud albedo
Cloud climatology
Cloud cover
Clouds
Computer centers
Correlation
Correlations
Daily temperatures
Datasets
Homogeneity
Meteorological satellites
Meteorology
Monitoring
Precipitation
Radiation
Radiation-cloud interactions
Satellites
Seasons
Solar radiation
Stability analysis
Statistical analysis
Time series
Time zones
Trends
Variability
Weather
Weather station data
Weather stations
title Variability and Trends in U.S. Cloud Cover: ISCCP, PATMOS-x, and CLARA-A1 Compared to Homogeneity-Adjusted Weather Observations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A56%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variability%20and%20Trends%20in%20U.S.%20Cloud%20Cover:%20ISCCP,%20PATMOS-x,%20and%20CLARA-A1%20Compared%20to%20Homogeneity-Adjusted%20Weather%20Observations&rft.jtitle=Journal%20of%20climate&rft.au=Sun,%20Bomin&rft.date=2015-06-01&rft.volume=28&rft.issue=11&rft.spage=4373&rft.epage=4389&rft.pages=4373-4389&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/JCLI-D-14-00805.1&rft_dat=%3Cjstor_proqu%3E26195144%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1685003663&rft_id=info:pmid/&rft_jstor_id=26195144&rfr_iscdi=true