Hypotension After Cardiac Operations Based on Autoregulation Monitoring Leads to Brain Cellular Injury
Background Individualizing blood pressure targets could improve organ perfusion compared with current practices. In this study we assess whether hypotension defined by cerebral autoregulation monitoring vs standard definitions is associated with elevation in the brain-specific injury biomarker glial...
Gespeichert in:
Veröffentlicht in: | The Annals of thoracic surgery 2015-08, Vol.100 (2), p.487-493 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background Individualizing blood pressure targets could improve organ perfusion compared with current practices. In this study we assess whether hypotension defined by cerebral autoregulation monitoring vs standard definitions is associated with elevation in the brain-specific injury biomarker glial fibrillary acidic protein plasma levels (GFAP). Methods Plasma GFAP levels were measured in 121 patients undergoing cardiac operations after anesthesia induction, at the conclusion of the operation, and on postoperative day 1. Cerebral autoregulation was monitored during the operation with the cerebral oximetry index, which correlates low-frequency changes in mean arterial pressure (MAP) and regional cerebral oxygen saturation. Blood pressure was recorded every 15 minutes in the intensive care unit. Hypotension was defined based on autoregulation data as an MAP below the optimal MAP (MAP at the lowest cerebral oximetry index) and based on standard definitions (systolic blood pressure decrement >20%, >30% from baseline, or |
---|---|
ISSN: | 0003-4975 1552-6259 |
DOI: | 10.1016/j.athoracsur.2015.03.036 |