Post-transcriptional Regulation of Vascular Endothelial Growth Factor by Hypoxia ()

The major control point for the hypoxic induction of the vascular endothelial growth factor (VEGF) gene is the regulation of the steady-state level of the mRNA. We previously demonstrated a discrepancy between the transcription rate and the steady-state mRNA level induced by hypoxia. This led us to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1996-02, Vol.271 (5), p.2746-2753
Hauptverfasser: Levy, Andrew P., Levy, Nina S., Goldberg, Mark A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2753
container_issue 5
container_start_page 2746
container_title The Journal of biological chemistry
container_volume 271
creator Levy, Andrew P.
Levy, Nina S.
Goldberg, Mark A.
description The major control point for the hypoxic induction of the vascular endothelial growth factor (VEGF) gene is the regulation of the steady-state level of the mRNA. We previously demonstrated a discrepancy between the transcription rate and the steady-state mRNA level induced by hypoxia. This led us to examine the post-transcriptional regulation of VEGF expression. Actinomycin D experiments revealed that hypoxia increased VEGF mRNA half-life from 43 ± 6 min to 106 ± 9 min. Using an in vitro mRNA degradation assay, the half-life of VEGF mRNA 3′-untranslated region (UTR) transcripts were also found to be increased when incubated with hypoxic versus normoxic extracts. Both cis-regulatory elements involved in VEGF mRNA degradation under normoxic conditions and in increased stabilization under hypoxic conditions were mapped using this degradation assay. A hypoxia-induced protein(s) was found that bound to the sequences in the VEGF 3′-UTR which mediated increased stability in the degradation assay. Furthermore, genistein, a tyrosine kinase inhibitor, blocked the hypoxia-induced stabilization of VEGF 3′-UTR transcripts and inhibited hypoxia-induced protein binding to the VEGF 3′-UTR. These findings demonstrate a significant post-transcriptional component to the regulation of VEGF.
doi_str_mv 10.1074/jbc.271.5.2746
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17012575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925817457358</els_id><sourcerecordid>17012575</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-306ee58b3ffc85394312c7a60986777073fef6a18f9b346c73937d42189285763</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4MoOn9cvQnFg-ihM2maJj2KOCcMFH_hLaTp6xrpmplk6v57MzYED-aQ8Hif933hg9AxwUOCeX75XulhxsmQxTsvttCAYEFTysjbNhpgnJG0zJjYQ_vev-N48pLsol3BeJExPEBPD9aHNDjVe-3MPBjbqy55hOmiU6sisU3yqryOpUtu-tqGFjoTkVtnv0KbjJQO1iXVMhkv5_bbqOT84hDtNKrzcLR5D9DL6Ob5epxO7m_vrq8mqWaYhpTiAoCJijaNFoyWOSWZ5qrApSg455jTBppCEdGUFc0LzWlJeZ1nRJTZ6v_0AJ2tc-fOfizABzkzXkPXqR7swkvCMckYZxEcrkHtrPcOGjl3ZqbcUhIsVxZltCijRcnkymIcONkkL6oZ1L_4Rlvsn677rZm2X8aBrIzVLcz-hog1BNHBpwEnvTbQa6jjgA6ytua__T9OG4q3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17012575</pqid></control><display><type>article</type><title>Post-transcriptional Regulation of Vascular Endothelial Growth Factor by Hypoxia ()</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Levy, Andrew P. ; Levy, Nina S. ; Goldberg, Mark A.</creator><creatorcontrib>Levy, Andrew P. ; Levy, Nina S. ; Goldberg, Mark A.</creatorcontrib><description>The major control point for the hypoxic induction of the vascular endothelial growth factor (VEGF) gene is the regulation of the steady-state level of the mRNA. We previously demonstrated a discrepancy between the transcription rate and the steady-state mRNA level induced by hypoxia. This led us to examine the post-transcriptional regulation of VEGF expression. Actinomycin D experiments revealed that hypoxia increased VEGF mRNA half-life from 43 ± 6 min to 106 ± 9 min. Using an in vitro mRNA degradation assay, the half-life of VEGF mRNA 3′-untranslated region (UTR) transcripts were also found to be increased when incubated with hypoxic versus normoxic extracts. Both cis-regulatory elements involved in VEGF mRNA degradation under normoxic conditions and in increased stabilization under hypoxic conditions were mapped using this degradation assay. A hypoxia-induced protein(s) was found that bound to the sequences in the VEGF 3′-UTR which mediated increased stability in the degradation assay. Furthermore, genistein, a tyrosine kinase inhibitor, blocked the hypoxia-induced stabilization of VEGF 3′-UTR transcripts and inhibited hypoxia-induced protein binding to the VEGF 3′-UTR. These findings demonstrate a significant post-transcriptional component to the regulation of VEGF.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.271.5.2746</identifier><identifier>PMID: 8576250</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Base Sequence ; Cell Hypoxia ; Cell-Free System ; Endothelial Growth Factors - metabolism ; Genistein ; Isoflavones - pharmacology ; Lymphokines - metabolism ; Molecular Sequence Data ; PC12 Cells ; Rats ; RNA Processing, Post-Transcriptional ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Transcription, Genetic - drug effects ; Vascular Endothelial Growth Factor A ; Vascular Endothelial Growth Factors</subject><ispartof>The Journal of biological chemistry, 1996-02, Vol.271 (5), p.2746-2753</ispartof><rights>1996 © 1996 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-306ee58b3ffc85394312c7a60986777073fef6a18f9b346c73937d42189285763</citedby><cites>FETCH-LOGICAL-c503t-306ee58b3ffc85394312c7a60986777073fef6a18f9b346c73937d42189285763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8576250$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Levy, Andrew P.</creatorcontrib><creatorcontrib>Levy, Nina S.</creatorcontrib><creatorcontrib>Goldberg, Mark A.</creatorcontrib><title>Post-transcriptional Regulation of Vascular Endothelial Growth Factor by Hypoxia ()</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The major control point for the hypoxic induction of the vascular endothelial growth factor (VEGF) gene is the regulation of the steady-state level of the mRNA. We previously demonstrated a discrepancy between the transcription rate and the steady-state mRNA level induced by hypoxia. This led us to examine the post-transcriptional regulation of VEGF expression. Actinomycin D experiments revealed that hypoxia increased VEGF mRNA half-life from 43 ± 6 min to 106 ± 9 min. Using an in vitro mRNA degradation assay, the half-life of VEGF mRNA 3′-untranslated region (UTR) transcripts were also found to be increased when incubated with hypoxic versus normoxic extracts. Both cis-regulatory elements involved in VEGF mRNA degradation under normoxic conditions and in increased stabilization under hypoxic conditions were mapped using this degradation assay. A hypoxia-induced protein(s) was found that bound to the sequences in the VEGF 3′-UTR which mediated increased stability in the degradation assay. Furthermore, genistein, a tyrosine kinase inhibitor, blocked the hypoxia-induced stabilization of VEGF 3′-UTR transcripts and inhibited hypoxia-induced protein binding to the VEGF 3′-UTR. These findings demonstrate a significant post-transcriptional component to the regulation of VEGF.</description><subject>Animals</subject><subject>Base Sequence</subject><subject>Cell Hypoxia</subject><subject>Cell-Free System</subject><subject>Endothelial Growth Factors - metabolism</subject><subject>Genistein</subject><subject>Isoflavones - pharmacology</subject><subject>Lymphokines - metabolism</subject><subject>Molecular Sequence Data</subject><subject>PC12 Cells</subject><subject>Rats</subject><subject>RNA Processing, Post-Transcriptional</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Transcription, Genetic - drug effects</subject><subject>Vascular Endothelial Growth Factor A</subject><subject>Vascular Endothelial Growth Factors</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM9LwzAUx4MoOn9cvQnFg-ihM2maJj2KOCcMFH_hLaTp6xrpmplk6v57MzYED-aQ8Hif933hg9AxwUOCeX75XulhxsmQxTsvttCAYEFTysjbNhpgnJG0zJjYQ_vev-N48pLsol3BeJExPEBPD9aHNDjVe-3MPBjbqy55hOmiU6sisU3yqryOpUtu-tqGFjoTkVtnv0KbjJQO1iXVMhkv5_bbqOT84hDtNKrzcLR5D9DL6Ob5epxO7m_vrq8mqWaYhpTiAoCJijaNFoyWOSWZ5qrApSg455jTBppCEdGUFc0LzWlJeZ1nRJTZ6v_0AJ2tc-fOfizABzkzXkPXqR7swkvCMckYZxEcrkHtrPcOGjl3ZqbcUhIsVxZltCijRcnkymIcONkkL6oZ1L_4Rlvsn677rZm2X8aBrIzVLcz-hog1BNHBpwEnvTbQa6jjgA6ytua__T9OG4q3</recordid><startdate>19960202</startdate><enddate>19960202</enddate><creator>Levy, Andrew P.</creator><creator>Levy, Nina S.</creator><creator>Goldberg, Mark A.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TO</scope><scope>H94</scope></search><sort><creationdate>19960202</creationdate><title>Post-transcriptional Regulation of Vascular Endothelial Growth Factor by Hypoxia ()</title><author>Levy, Andrew P. ; Levy, Nina S. ; Goldberg, Mark A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-306ee58b3ffc85394312c7a60986777073fef6a18f9b346c73937d42189285763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Animals</topic><topic>Base Sequence</topic><topic>Cell Hypoxia</topic><topic>Cell-Free System</topic><topic>Endothelial Growth Factors - metabolism</topic><topic>Genistein</topic><topic>Isoflavones - pharmacology</topic><topic>Lymphokines - metabolism</topic><topic>Molecular Sequence Data</topic><topic>PC12 Cells</topic><topic>Rats</topic><topic>RNA Processing, Post-Transcriptional</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Transcription, Genetic - drug effects</topic><topic>Vascular Endothelial Growth Factor A</topic><topic>Vascular Endothelial Growth Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Levy, Andrew P.</creatorcontrib><creatorcontrib>Levy, Nina S.</creatorcontrib><creatorcontrib>Goldberg, Mark A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Levy, Andrew P.</au><au>Levy, Nina S.</au><au>Goldberg, Mark A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Post-transcriptional Regulation of Vascular Endothelial Growth Factor by Hypoxia ()</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>1996-02-02</date><risdate>1996</risdate><volume>271</volume><issue>5</issue><spage>2746</spage><epage>2753</epage><pages>2746-2753</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The major control point for the hypoxic induction of the vascular endothelial growth factor (VEGF) gene is the regulation of the steady-state level of the mRNA. We previously demonstrated a discrepancy between the transcription rate and the steady-state mRNA level induced by hypoxia. This led us to examine the post-transcriptional regulation of VEGF expression. Actinomycin D experiments revealed that hypoxia increased VEGF mRNA half-life from 43 ± 6 min to 106 ± 9 min. Using an in vitro mRNA degradation assay, the half-life of VEGF mRNA 3′-untranslated region (UTR) transcripts were also found to be increased when incubated with hypoxic versus normoxic extracts. Both cis-regulatory elements involved in VEGF mRNA degradation under normoxic conditions and in increased stabilization under hypoxic conditions were mapped using this degradation assay. A hypoxia-induced protein(s) was found that bound to the sequences in the VEGF 3′-UTR which mediated increased stability in the degradation assay. Furthermore, genistein, a tyrosine kinase inhibitor, blocked the hypoxia-induced stabilization of VEGF 3′-UTR transcripts and inhibited hypoxia-induced protein binding to the VEGF 3′-UTR. These findings demonstrate a significant post-transcriptional component to the regulation of VEGF.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>8576250</pmid><doi>10.1074/jbc.271.5.2746</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 1996-02, Vol.271 (5), p.2746-2753
issn 0021-9258
1083-351X
language eng
recordid cdi_proquest_miscellaneous_17012575
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Animals
Base Sequence
Cell Hypoxia
Cell-Free System
Endothelial Growth Factors - metabolism
Genistein
Isoflavones - pharmacology
Lymphokines - metabolism
Molecular Sequence Data
PC12 Cells
Rats
RNA Processing, Post-Transcriptional
RNA, Messenger - genetics
RNA, Messenger - metabolism
Transcription, Genetic - drug effects
Vascular Endothelial Growth Factor A
Vascular Endothelial Growth Factors
title Post-transcriptional Regulation of Vascular Endothelial Growth Factor by Hypoxia ()
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T20%3A36%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Post-transcriptional%20Regulation%20of%20Vascular%20Endothelial%20Growth%20Factor%20by%20Hypoxia%20()&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Levy,%20Andrew%20P.&rft.date=1996-02-02&rft.volume=271&rft.issue=5&rft.spage=2746&rft.epage=2753&rft.pages=2746-2753&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.271.5.2746&rft_dat=%3Cproquest_cross%3E17012575%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17012575&rft_id=info:pmid/8576250&rft_els_id=S0021925817457358&rfr_iscdi=true