Post-transcriptional Regulation of Vascular Endothelial Growth Factor by Hypoxia ()
The major control point for the hypoxic induction of the vascular endothelial growth factor (VEGF) gene is the regulation of the steady-state level of the mRNA. We previously demonstrated a discrepancy between the transcription rate and the steady-state mRNA level induced by hypoxia. This led us to...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 1996-02, Vol.271 (5), p.2746-2753 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2753 |
---|---|
container_issue | 5 |
container_start_page | 2746 |
container_title | The Journal of biological chemistry |
container_volume | 271 |
creator | Levy, Andrew P. Levy, Nina S. Goldberg, Mark A. |
description | The major control point for the hypoxic induction of the vascular endothelial growth factor (VEGF) gene is the regulation of the steady-state level of the mRNA. We previously demonstrated a discrepancy between the transcription rate and the steady-state mRNA level induced by hypoxia. This led us to examine the post-transcriptional regulation of VEGF expression. Actinomycin D experiments revealed that hypoxia increased VEGF mRNA half-life from 43 ± 6 min to 106 ± 9 min. Using an in vitro mRNA degradation assay, the half-life of VEGF mRNA 3′-untranslated region (UTR) transcripts were also found to be increased when incubated with hypoxic versus normoxic extracts. Both cis-regulatory elements involved in VEGF mRNA degradation under normoxic conditions and in increased stabilization under hypoxic conditions were mapped using this degradation assay. A hypoxia-induced protein(s) was found that bound to the sequences in the VEGF 3′-UTR which mediated increased stability in the degradation assay. Furthermore, genistein, a tyrosine kinase inhibitor, blocked the hypoxia-induced stabilization of VEGF 3′-UTR transcripts and inhibited hypoxia-induced protein binding to the VEGF 3′-UTR. These findings demonstrate a significant post-transcriptional component to the regulation of VEGF. |
doi_str_mv | 10.1074/jbc.271.5.2746 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17012575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925817457358</els_id><sourcerecordid>17012575</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-306ee58b3ffc85394312c7a60986777073fef6a18f9b346c73937d42189285763</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4MoOn9cvQnFg-ihM2maJj2KOCcMFH_hLaTp6xrpmplk6v57MzYED-aQ8Hif933hg9AxwUOCeX75XulhxsmQxTsvttCAYEFTysjbNhpgnJG0zJjYQ_vev-N48pLsol3BeJExPEBPD9aHNDjVe-3MPBjbqy55hOmiU6sisU3yqryOpUtu-tqGFjoTkVtnv0KbjJQO1iXVMhkv5_bbqOT84hDtNKrzcLR5D9DL6Ob5epxO7m_vrq8mqWaYhpTiAoCJijaNFoyWOSWZ5qrApSg455jTBppCEdGUFc0LzWlJeZ1nRJTZ6v_0AJ2tc-fOfizABzkzXkPXqR7swkvCMckYZxEcrkHtrPcOGjl3ZqbcUhIsVxZltCijRcnkymIcONkkL6oZ1L_4Rlvsn677rZm2X8aBrIzVLcz-hog1BNHBpwEnvTbQa6jjgA6ytua__T9OG4q3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17012575</pqid></control><display><type>article</type><title>Post-transcriptional Regulation of Vascular Endothelial Growth Factor by Hypoxia ()</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Levy, Andrew P. ; Levy, Nina S. ; Goldberg, Mark A.</creator><creatorcontrib>Levy, Andrew P. ; Levy, Nina S. ; Goldberg, Mark A.</creatorcontrib><description>The major control point for the hypoxic induction of the vascular endothelial growth factor (VEGF) gene is the regulation of the steady-state level of the mRNA. We previously demonstrated a discrepancy between the transcription rate and the steady-state mRNA level induced by hypoxia. This led us to examine the post-transcriptional regulation of VEGF expression. Actinomycin D experiments revealed that hypoxia increased VEGF mRNA half-life from 43 ± 6 min to 106 ± 9 min. Using an in vitro mRNA degradation assay, the half-life of VEGF mRNA 3′-untranslated region (UTR) transcripts were also found to be increased when incubated with hypoxic versus normoxic extracts. Both cis-regulatory elements involved in VEGF mRNA degradation under normoxic conditions and in increased stabilization under hypoxic conditions were mapped using this degradation assay. A hypoxia-induced protein(s) was found that bound to the sequences in the VEGF 3′-UTR which mediated increased stability in the degradation assay. Furthermore, genistein, a tyrosine kinase inhibitor, blocked the hypoxia-induced stabilization of VEGF 3′-UTR transcripts and inhibited hypoxia-induced protein binding to the VEGF 3′-UTR. These findings demonstrate a significant post-transcriptional component to the regulation of VEGF.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.271.5.2746</identifier><identifier>PMID: 8576250</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Base Sequence ; Cell Hypoxia ; Cell-Free System ; Endothelial Growth Factors - metabolism ; Genistein ; Isoflavones - pharmacology ; Lymphokines - metabolism ; Molecular Sequence Data ; PC12 Cells ; Rats ; RNA Processing, Post-Transcriptional ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Transcription, Genetic - drug effects ; Vascular Endothelial Growth Factor A ; Vascular Endothelial Growth Factors</subject><ispartof>The Journal of biological chemistry, 1996-02, Vol.271 (5), p.2746-2753</ispartof><rights>1996 © 1996 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-306ee58b3ffc85394312c7a60986777073fef6a18f9b346c73937d42189285763</citedby><cites>FETCH-LOGICAL-c503t-306ee58b3ffc85394312c7a60986777073fef6a18f9b346c73937d42189285763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8576250$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Levy, Andrew P.</creatorcontrib><creatorcontrib>Levy, Nina S.</creatorcontrib><creatorcontrib>Goldberg, Mark A.</creatorcontrib><title>Post-transcriptional Regulation of Vascular Endothelial Growth Factor by Hypoxia ()</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The major control point for the hypoxic induction of the vascular endothelial growth factor (VEGF) gene is the regulation of the steady-state level of the mRNA. We previously demonstrated a discrepancy between the transcription rate and the steady-state mRNA level induced by hypoxia. This led us to examine the post-transcriptional regulation of VEGF expression. Actinomycin D experiments revealed that hypoxia increased VEGF mRNA half-life from 43 ± 6 min to 106 ± 9 min. Using an in vitro mRNA degradation assay, the half-life of VEGF mRNA 3′-untranslated region (UTR) transcripts were also found to be increased when incubated with hypoxic versus normoxic extracts. Both cis-regulatory elements involved in VEGF mRNA degradation under normoxic conditions and in increased stabilization under hypoxic conditions were mapped using this degradation assay. A hypoxia-induced protein(s) was found that bound to the sequences in the VEGF 3′-UTR which mediated increased stability in the degradation assay. Furthermore, genistein, a tyrosine kinase inhibitor, blocked the hypoxia-induced stabilization of VEGF 3′-UTR transcripts and inhibited hypoxia-induced protein binding to the VEGF 3′-UTR. These findings demonstrate a significant post-transcriptional component to the regulation of VEGF.</description><subject>Animals</subject><subject>Base Sequence</subject><subject>Cell Hypoxia</subject><subject>Cell-Free System</subject><subject>Endothelial Growth Factors - metabolism</subject><subject>Genistein</subject><subject>Isoflavones - pharmacology</subject><subject>Lymphokines - metabolism</subject><subject>Molecular Sequence Data</subject><subject>PC12 Cells</subject><subject>Rats</subject><subject>RNA Processing, Post-Transcriptional</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Transcription, Genetic - drug effects</subject><subject>Vascular Endothelial Growth Factor A</subject><subject>Vascular Endothelial Growth Factors</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM9LwzAUx4MoOn9cvQnFg-ihM2maJj2KOCcMFH_hLaTp6xrpmplk6v57MzYED-aQ8Hif933hg9AxwUOCeX75XulhxsmQxTsvttCAYEFTysjbNhpgnJG0zJjYQ_vev-N48pLsol3BeJExPEBPD9aHNDjVe-3MPBjbqy55hOmiU6sisU3yqryOpUtu-tqGFjoTkVtnv0KbjJQO1iXVMhkv5_bbqOT84hDtNKrzcLR5D9DL6Ob5epxO7m_vrq8mqWaYhpTiAoCJijaNFoyWOSWZ5qrApSg455jTBppCEdGUFc0LzWlJeZ1nRJTZ6v_0AJ2tc-fOfizABzkzXkPXqR7swkvCMckYZxEcrkHtrPcOGjl3ZqbcUhIsVxZltCijRcnkymIcONkkL6oZ1L_4Rlvsn677rZm2X8aBrIzVLcz-hog1BNHBpwEnvTbQa6jjgA6ytua__T9OG4q3</recordid><startdate>19960202</startdate><enddate>19960202</enddate><creator>Levy, Andrew P.</creator><creator>Levy, Nina S.</creator><creator>Goldberg, Mark A.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TO</scope><scope>H94</scope></search><sort><creationdate>19960202</creationdate><title>Post-transcriptional Regulation of Vascular Endothelial Growth Factor by Hypoxia ()</title><author>Levy, Andrew P. ; Levy, Nina S. ; Goldberg, Mark A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-306ee58b3ffc85394312c7a60986777073fef6a18f9b346c73937d42189285763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Animals</topic><topic>Base Sequence</topic><topic>Cell Hypoxia</topic><topic>Cell-Free System</topic><topic>Endothelial Growth Factors - metabolism</topic><topic>Genistein</topic><topic>Isoflavones - pharmacology</topic><topic>Lymphokines - metabolism</topic><topic>Molecular Sequence Data</topic><topic>PC12 Cells</topic><topic>Rats</topic><topic>RNA Processing, Post-Transcriptional</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Transcription, Genetic - drug effects</topic><topic>Vascular Endothelial Growth Factor A</topic><topic>Vascular Endothelial Growth Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Levy, Andrew P.</creatorcontrib><creatorcontrib>Levy, Nina S.</creatorcontrib><creatorcontrib>Goldberg, Mark A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Levy, Andrew P.</au><au>Levy, Nina S.</au><au>Goldberg, Mark A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Post-transcriptional Regulation of Vascular Endothelial Growth Factor by Hypoxia ()</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>1996-02-02</date><risdate>1996</risdate><volume>271</volume><issue>5</issue><spage>2746</spage><epage>2753</epage><pages>2746-2753</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The major control point for the hypoxic induction of the vascular endothelial growth factor (VEGF) gene is the regulation of the steady-state level of the mRNA. We previously demonstrated a discrepancy between the transcription rate and the steady-state mRNA level induced by hypoxia. This led us to examine the post-transcriptional regulation of VEGF expression. Actinomycin D experiments revealed that hypoxia increased VEGF mRNA half-life from 43 ± 6 min to 106 ± 9 min. Using an in vitro mRNA degradation assay, the half-life of VEGF mRNA 3′-untranslated region (UTR) transcripts were also found to be increased when incubated with hypoxic versus normoxic extracts. Both cis-regulatory elements involved in VEGF mRNA degradation under normoxic conditions and in increased stabilization under hypoxic conditions were mapped using this degradation assay. A hypoxia-induced protein(s) was found that bound to the sequences in the VEGF 3′-UTR which mediated increased stability in the degradation assay. Furthermore, genistein, a tyrosine kinase inhibitor, blocked the hypoxia-induced stabilization of VEGF 3′-UTR transcripts and inhibited hypoxia-induced protein binding to the VEGF 3′-UTR. These findings demonstrate a significant post-transcriptional component to the regulation of VEGF.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>8576250</pmid><doi>10.1074/jbc.271.5.2746</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 1996-02, Vol.271 (5), p.2746-2753 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_proquest_miscellaneous_17012575 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Animals Base Sequence Cell Hypoxia Cell-Free System Endothelial Growth Factors - metabolism Genistein Isoflavones - pharmacology Lymphokines - metabolism Molecular Sequence Data PC12 Cells Rats RNA Processing, Post-Transcriptional RNA, Messenger - genetics RNA, Messenger - metabolism Transcription, Genetic - drug effects Vascular Endothelial Growth Factor A Vascular Endothelial Growth Factors |
title | Post-transcriptional Regulation of Vascular Endothelial Growth Factor by Hypoxia () |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T20%3A36%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Post-transcriptional%20Regulation%20of%20Vascular%20Endothelial%20Growth%20Factor%20by%20Hypoxia%20()&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Levy,%20Andrew%20P.&rft.date=1996-02-02&rft.volume=271&rft.issue=5&rft.spage=2746&rft.epage=2753&rft.pages=2746-2753&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.271.5.2746&rft_dat=%3Cproquest_cross%3E17012575%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17012575&rft_id=info:pmid/8576250&rft_els_id=S0021925817457358&rfr_iscdi=true |