Observing High-Pressure Chemistry in Graphene Bubbles

Using IR spectroscopy, high‐pressure reactions of molecules were observed in liquids entrapped by graphene nanobubbles formed at the graphene–diamond interface. Nanobubbles formed on graphene as a result of thermally induced bonding of its edges with diamond are highly impermeable, thus providing a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2014-01, Vol.53 (1), p.215-219
Hauptverfasser: Lim, Candy Haley Yi Xuan, Nesladek, Milos, Loh, Kian Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 219
container_issue 1
container_start_page 215
container_title Angewandte Chemie International Edition
container_volume 53
creator Lim, Candy Haley Yi Xuan
Nesladek, Milos
Loh, Kian Ping
description Using IR spectroscopy, high‐pressure reactions of molecules were observed in liquids entrapped by graphene nanobubbles formed at the graphene–diamond interface. Nanobubbles formed on graphene as a result of thermally induced bonding of its edges with diamond are highly impermeable, thus providing a good sealing of solvents within. Owing to the optical transparency of graphene and diamond, high‐pressure chemical reactions within the bubbles can be probed with vibrational spectroscopy. By monitoring the conformational changes of pressure‐sensitive molecules, the pressure within the nanobubble can be calibrated as a function of temperature and it is about 1 GPa at 600 K. The polymerization of buckministerfullerene (C60), which is symmetrically forbidden under ambient conditions, is observed to proceed in well‐defined stages in the pressurized nanobubbles. Graphene anvil: Graphene bubbles can be used as a bench‐top anvil cell for studying high‐pressure chemistry. Pressure‐sensitive molecules that undergo conformational changes were used to probe the internal pressures inside the bubbles, which are 0.5–1 GPa over a temperature window of up to 673 K. The pressure‐induced oligomerization of C60 molecules occurring at distinct P–T windows could be followed using FTIR spectroscopy.
doi_str_mv 10.1002/anie.201308682
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701125378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3163886711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5472-366562f1d8f62b42c35b4a692fb7c43c5f303725177313392368b209300455173</originalsourceid><addsrcrecordid>eNqFkT1PwzAQhi0EgvKxMqJILCwp5zt_JCOtoCBVlAHEaCWpQwNpWmwC9N_jqFAhFiZb1vM-unvN2DGHPgfA86ypbB-BEyQqwS3W4xJ5TFrTdrgLolgnku-xfe-fA58koHbZHgqUKRL1mJzk3rr3qnmKrqunWXznrPets9FwZueVf3OrqGqikcuWM9vYaNDmeW39Idsps9rbo-_zgD1cXd4Pr-PxZHQzvBjHhRQaY1JKKiz5NCkV5gILkrnIVIplrgtBhSwJSKPkYVxOFCZSSY6QEoCQ4ZUO2Nnau3SL19b6NxNmKmxdZ41dtN5wDZyjJJ38j4oUNIKAznr6B31etK4JiwRKg-ja6YT9NVW4hffOlmbpqnnmVoaD6bo3Xfdm030InHxr23xupxv8p-wApGvgo6rt6h-dubi9ufwtj9fZ8Cf2c5PN3ItRmrQ0j7cjAwM9vhoimhF9Adl-mjY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1470424258</pqid></control><display><type>article</type><title>Observing High-Pressure Chemistry in Graphene Bubbles</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lim, Candy Haley Yi Xuan ; Nesladek, Milos ; Loh, Kian Ping</creator><creatorcontrib>Lim, Candy Haley Yi Xuan ; Nesladek, Milos ; Loh, Kian Ping</creatorcontrib><description>Using IR spectroscopy, high‐pressure reactions of molecules were observed in liquids entrapped by graphene nanobubbles formed at the graphene–diamond interface. Nanobubbles formed on graphene as a result of thermally induced bonding of its edges with diamond are highly impermeable, thus providing a good sealing of solvents within. Owing to the optical transparency of graphene and diamond, high‐pressure chemical reactions within the bubbles can be probed with vibrational spectroscopy. By monitoring the conformational changes of pressure‐sensitive molecules, the pressure within the nanobubble can be calibrated as a function of temperature and it is about 1 GPa at 600 K. The polymerization of buckministerfullerene (C60), which is symmetrically forbidden under ambient conditions, is observed to proceed in well‐defined stages in the pressurized nanobubbles. Graphene anvil: Graphene bubbles can be used as a bench‐top anvil cell for studying high‐pressure chemistry. Pressure‐sensitive molecules that undergo conformational changes were used to probe the internal pressures inside the bubbles, which are 0.5–1 GPa over a temperature window of up to 673 K. The pressure‐induced oligomerization of C60 molecules occurring at distinct P–T windows could be followed using FTIR spectroscopy.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201308682</identifier><identifier>PMID: 24259233</identifier><identifier>CODEN: ACIEAY</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>anvil cells ; Anvils ; Bubbles ; Buckminsterfullerene ; conformational changes ; diamond ; Diamonds ; Fullerenes ; Graphene ; Graphite ; high pressure ; Nanostructure ; Spectroscopy</subject><ispartof>Angewandte Chemie International Edition, 2014-01, Vol.53 (1), p.215-219</ispartof><rights>Copyright © 2014 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2014 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>Copyright © 2014 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5472-366562f1d8f62b42c35b4a692fb7c43c5f303725177313392368b209300455173</citedby><cites>FETCH-LOGICAL-c5472-366562f1d8f62b42c35b4a692fb7c43c5f303725177313392368b209300455173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201308682$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201308682$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24259233$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lim, Candy Haley Yi Xuan</creatorcontrib><creatorcontrib>Nesladek, Milos</creatorcontrib><creatorcontrib>Loh, Kian Ping</creatorcontrib><title>Observing High-Pressure Chemistry in Graphene Bubbles</title><title>Angewandte Chemie International Edition</title><addtitle>Angew. Chem. Int. Ed</addtitle><description>Using IR spectroscopy, high‐pressure reactions of molecules were observed in liquids entrapped by graphene nanobubbles formed at the graphene–diamond interface. Nanobubbles formed on graphene as a result of thermally induced bonding of its edges with diamond are highly impermeable, thus providing a good sealing of solvents within. Owing to the optical transparency of graphene and diamond, high‐pressure chemical reactions within the bubbles can be probed with vibrational spectroscopy. By monitoring the conformational changes of pressure‐sensitive molecules, the pressure within the nanobubble can be calibrated as a function of temperature and it is about 1 GPa at 600 K. The polymerization of buckministerfullerene (C60), which is symmetrically forbidden under ambient conditions, is observed to proceed in well‐defined stages in the pressurized nanobubbles. Graphene anvil: Graphene bubbles can be used as a bench‐top anvil cell for studying high‐pressure chemistry. Pressure‐sensitive molecules that undergo conformational changes were used to probe the internal pressures inside the bubbles, which are 0.5–1 GPa over a temperature window of up to 673 K. The pressure‐induced oligomerization of C60 molecules occurring at distinct P–T windows could be followed using FTIR spectroscopy.</description><subject>anvil cells</subject><subject>Anvils</subject><subject>Bubbles</subject><subject>Buckminsterfullerene</subject><subject>conformational changes</subject><subject>diamond</subject><subject>Diamonds</subject><subject>Fullerenes</subject><subject>Graphene</subject><subject>Graphite</subject><subject>high pressure</subject><subject>Nanostructure</subject><subject>Spectroscopy</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkT1PwzAQhi0EgvKxMqJILCwp5zt_JCOtoCBVlAHEaCWpQwNpWmwC9N_jqFAhFiZb1vM-unvN2DGHPgfA86ypbB-BEyQqwS3W4xJ5TFrTdrgLolgnku-xfe-fA58koHbZHgqUKRL1mJzk3rr3qnmKrqunWXznrPets9FwZueVf3OrqGqikcuWM9vYaNDmeW39Idsps9rbo-_zgD1cXd4Pr-PxZHQzvBjHhRQaY1JKKiz5NCkV5gILkrnIVIplrgtBhSwJSKPkYVxOFCZSSY6QEoCQ4ZUO2Nnau3SL19b6NxNmKmxdZ41dtN5wDZyjJJ38j4oUNIKAznr6B31etK4JiwRKg-ja6YT9NVW4hffOlmbpqnnmVoaD6bo3Xfdm030InHxr23xupxv8p-wApGvgo6rt6h-dubi9ufwtj9fZ8Cf2c5PN3ItRmrQ0j7cjAwM9vhoimhF9Adl-mjY</recordid><startdate>20140103</startdate><enddate>20140103</enddate><creator>Lim, Candy Haley Yi Xuan</creator><creator>Nesladek, Milos</creator><creator>Loh, Kian Ping</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140103</creationdate><title>Observing High-Pressure Chemistry in Graphene Bubbles</title><author>Lim, Candy Haley Yi Xuan ; Nesladek, Milos ; Loh, Kian Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5472-366562f1d8f62b42c35b4a692fb7c43c5f303725177313392368b209300455173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>anvil cells</topic><topic>Anvils</topic><topic>Bubbles</topic><topic>Buckminsterfullerene</topic><topic>conformational changes</topic><topic>diamond</topic><topic>Diamonds</topic><topic>Fullerenes</topic><topic>Graphene</topic><topic>Graphite</topic><topic>high pressure</topic><topic>Nanostructure</topic><topic>Spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lim, Candy Haley Yi Xuan</creatorcontrib><creatorcontrib>Nesladek, Milos</creatorcontrib><creatorcontrib>Loh, Kian Ping</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lim, Candy Haley Yi Xuan</au><au>Nesladek, Milos</au><au>Loh, Kian Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observing High-Pressure Chemistry in Graphene Bubbles</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew. Chem. Int. Ed</addtitle><date>2014-01-03</date><risdate>2014</risdate><volume>53</volume><issue>1</issue><spage>215</spage><epage>219</epage><pages>215-219</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><coden>ACIEAY</coden><abstract>Using IR spectroscopy, high‐pressure reactions of molecules were observed in liquids entrapped by graphene nanobubbles formed at the graphene–diamond interface. Nanobubbles formed on graphene as a result of thermally induced bonding of its edges with diamond are highly impermeable, thus providing a good sealing of solvents within. Owing to the optical transparency of graphene and diamond, high‐pressure chemical reactions within the bubbles can be probed with vibrational spectroscopy. By monitoring the conformational changes of pressure‐sensitive molecules, the pressure within the nanobubble can be calibrated as a function of temperature and it is about 1 GPa at 600 K. The polymerization of buckministerfullerene (C60), which is symmetrically forbidden under ambient conditions, is observed to proceed in well‐defined stages in the pressurized nanobubbles. Graphene anvil: Graphene bubbles can be used as a bench‐top anvil cell for studying high‐pressure chemistry. Pressure‐sensitive molecules that undergo conformational changes were used to probe the internal pressures inside the bubbles, which are 0.5–1 GPa over a temperature window of up to 673 K. The pressure‐induced oligomerization of C60 molecules occurring at distinct P–T windows could be followed using FTIR spectroscopy.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>24259233</pmid><doi>10.1002/anie.201308682</doi><tpages>5</tpages><edition>International ed. in English</edition></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2014-01, Vol.53 (1), p.215-219
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_1701125378
source Wiley Online Library Journals Frontfile Complete
subjects anvil cells
Anvils
Bubbles
Buckminsterfullerene
conformational changes
diamond
Diamonds
Fullerenes
Graphene
Graphite
high pressure
Nanostructure
Spectroscopy
title Observing High-Pressure Chemistry in Graphene Bubbles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T06%3A27%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observing%20High-Pressure%20Chemistry%20in%20Graphene%20Bubbles&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Lim,%20Candy%20Haley%20Yi%20Xuan&rft.date=2014-01-03&rft.volume=53&rft.issue=1&rft.spage=215&rft.epage=219&rft.pages=215-219&rft.issn=1433-7851&rft.eissn=1521-3773&rft.coden=ACIEAY&rft_id=info:doi/10.1002/anie.201308682&rft_dat=%3Cproquest_cross%3E3163886711%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1470424258&rft_id=info:pmid/24259233&rfr_iscdi=true