Quantifying the promise of lithium–air batteries for electric vehicles

Researchers worldwide view the high theoretical specific energy of the lithium-air or lithium-oxygen battery as a promising path to a transformational energy-storage system for electric vehicles. Here, we present a self-consistent material-to-system analysis of the best-case mass, volume, and cost v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental science 2014, Vol.7 (5), p.1555-1563
Hauptverfasser: Gallagher, Kevin G, Goebel, Steven, Greszler, Thomas, Mathias, Mark, Oelerich, Wolfgang, Eroglu, Damla, Srinivasan, Venkat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Researchers worldwide view the high theoretical specific energy of the lithium-air or lithium-oxygen battery as a promising path to a transformational energy-storage system for electric vehicles. Here, we present a self-consistent material-to-system analysis of the best-case mass, volume, and cost values for the nonaqueous lithium-oxygen battery and compare them with current and advanced lithium-based batteries using metal-oxide positive electrodes. Surprisingly, despite their high theoretical specific energy, lithium-oxygen systems were projected to achieve parity with other candidate chemistries as a result of the requirement to deliver and purify or to enclose the gaseous oxygen reactant. The theoretical specific energy, which leads to predictions of an order of magnitude improvement over a traditional lithium-ion battery, is shown to be an inadequate predictor of systems-level cost, volume, and mass. This analysis reveals the importance of system-level considerations and identifies the reversible lithium-metal negative electrode as a common, critical high-risk technology needed for batteries to reach long-term automotive objectives. Additionally, advanced lithium-ion technology was found to be a moderate risk pathway to achieve the majority of volume and cost reductions.
ISSN:1754-5692
1754-5706
DOI:10.1039/c3ee43870h