Synthesis of Nanostructured Carbon through Ionothermal Carbonization of Common Organic Solvents and Solutions
A combination of ionothermal synthesis and hot‐injection techniques leads to novel nanocarbons made from organic solvents. Controlled addition of commonly used organic solvents into a hot ZnCl2 melt gives rise to spherical, sheetlike, and branched nanofibrous carbon nanoparticles with surprisingly h...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2015-04, Vol.54 (18), p.5507-5512 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5512 |
---|---|
container_issue | 18 |
container_start_page | 5507 |
container_title | Angewandte Chemie International Edition |
container_volume | 54 |
creator | Chang, Yuanqin Antonietti, Markus Fellinger, Tim-Patrick |
description | A combination of ionothermal synthesis and hot‐injection techniques leads to novel nanocarbons made from organic solvents. Controlled addition of commonly used organic solvents into a hot ZnCl2 melt gives rise to spherical, sheetlike, and branched nanofibrous carbon nanoparticles with surprisingly high carbon efficiency. When heteroatom‐containing solvents were used, the doping levels reach up to 14 wt. % nitrogen and 13 wt. % sulfur. Materials with high surface areas and large pore volumes of solvent carbons as high as 1666 m2 g−1 and 2.80 cm3 g−1 in addition to CO2 adsorption capacities of 4.13 mmol g−1 at 273 K and 1 bar can be obtained. The new method works not only for pure carbon materials, but was also extended for the synthesis of carbon/inorganic nanocomposites. ZnS@C, Ni@C, and Co@C were successfully prepared with this straightforward procedure. The obtained Ni@C nanocomposites perform well in the electrocatalytic water oxidation, comparable with commercial noble‐metal catalysts.
Hot stuff: Hot‐injection techniques were combined with ionothermal chemistry to transform common organic solvents into nanostructured porous carbons with high yields. The same method can be further applied to synthesize various carbon/inorganic composites, for example, for electrocatalytic applications. |
doi_str_mv | 10.1002/anie.201411685 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701116207</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3659326411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6215-bc1e3c97f7d844ad9de451edb3ac4f43232eb3723c96d5664ca5fe0de13743223</originalsourceid><addsrcrecordid>eNqFkc1vEzEQxS1ERUvhyhGtxIXLBo8_N8eyakOkKD20FUfLa3ubLbt2sXeB9K_HUUKEeunJY83vPY3eQ-gD4BlgTL5o37kZwcAARMVfoTPgBEoqJX2dZ0ZpKSsOp-htSg-Zryos3qBTwiXDjIszNNxs_bhxqUtFaIu19iGNcTLjFJ0tah2b4ItxE8N0vymWwYfMxkH3h1X3pMcuE1lah2HI03W8zyeZ4ib0v5wfU6G93X2mHZfeoZNW98m9P7zn6O7q8rb-Vq6uF8v6YlUaQYCXjQFHzVy20laMaTu3jnFwtqHasJZRQolrqCSZEZYLwYzmrcPWAZV5S-g5-rz3fYzh5-TSqIYuGdf32rswJQUSQw6MYJnRT8_QhzBFn69TICSDec6QZWq2p0wMKUXXqsfYDTpuFWC1K0LtilDHIrLg48F2agZnj_i_5DMw3wO_u95tX7BTF-vl5f_m5V7bpdH9OWp1_KGEpJKr7-uFWqwEfK05qFv6F0S_pPM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1674194334</pqid></control><display><type>article</type><title>Synthesis of Nanostructured Carbon through Ionothermal Carbonization of Common Organic Solvents and Solutions</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chang, Yuanqin ; Antonietti, Markus ; Fellinger, Tim-Patrick</creator><creatorcontrib>Chang, Yuanqin ; Antonietti, Markus ; Fellinger, Tim-Patrick</creatorcontrib><description>A combination of ionothermal synthesis and hot‐injection techniques leads to novel nanocarbons made from organic solvents. Controlled addition of commonly used organic solvents into a hot ZnCl2 melt gives rise to spherical, sheetlike, and branched nanofibrous carbon nanoparticles with surprisingly high carbon efficiency. When heteroatom‐containing solvents were used, the doping levels reach up to 14 wt. % nitrogen and 13 wt. % sulfur. Materials with high surface areas and large pore volumes of solvent carbons as high as 1666 m2 g−1 and 2.80 cm3 g−1 in addition to CO2 adsorption capacities of 4.13 mmol g−1 at 273 K and 1 bar can be obtained. The new method works not only for pure carbon materials, but was also extended for the synthesis of carbon/inorganic nanocomposites. ZnS@C, Ni@C, and Co@C were successfully prepared with this straightforward procedure. The obtained Ni@C nanocomposites perform well in the electrocatalytic water oxidation, comparable with commercial noble‐metal catalysts.
Hot stuff: Hot‐injection techniques were combined with ionothermal chemistry to transform common organic solvents into nanostructured porous carbons with high yields. The same method can be further applied to synthesize various carbon/inorganic composites, for example, for electrocatalytic applications.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201411685</identifier><identifier>PMID: 25740456</identifier><identifier>CODEN: ACIEAY</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Branched ; Carbon ; carbon nanostructures ; Catalysts ; composite materials ; Doping ; electrocatalysts ; hot injection ; ionothermal synthesis ; Nanocomposites ; Nanostructure ; Solvents ; Sulfur ; Synthesis</subject><ispartof>Angewandte Chemie International Edition, 2015-04, Vol.54 (18), p.5507-5512</ispartof><rights>2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6215-bc1e3c97f7d844ad9de451edb3ac4f43232eb3723c96d5664ca5fe0de13743223</citedby><cites>FETCH-LOGICAL-c6215-bc1e3c97f7d844ad9de451edb3ac4f43232eb3723c96d5664ca5fe0de13743223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201411685$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201411685$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25740456$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chang, Yuanqin</creatorcontrib><creatorcontrib>Antonietti, Markus</creatorcontrib><creatorcontrib>Fellinger, Tim-Patrick</creatorcontrib><title>Synthesis of Nanostructured Carbon through Ionothermal Carbonization of Common Organic Solvents and Solutions</title><title>Angewandte Chemie International Edition</title><addtitle>Angew. Chem. Int. Ed</addtitle><description>A combination of ionothermal synthesis and hot‐injection techniques leads to novel nanocarbons made from organic solvents. Controlled addition of commonly used organic solvents into a hot ZnCl2 melt gives rise to spherical, sheetlike, and branched nanofibrous carbon nanoparticles with surprisingly high carbon efficiency. When heteroatom‐containing solvents were used, the doping levels reach up to 14 wt. % nitrogen and 13 wt. % sulfur. Materials with high surface areas and large pore volumes of solvent carbons as high as 1666 m2 g−1 and 2.80 cm3 g−1 in addition to CO2 adsorption capacities of 4.13 mmol g−1 at 273 K and 1 bar can be obtained. The new method works not only for pure carbon materials, but was also extended for the synthesis of carbon/inorganic nanocomposites. ZnS@C, Ni@C, and Co@C were successfully prepared with this straightforward procedure. The obtained Ni@C nanocomposites perform well in the electrocatalytic water oxidation, comparable with commercial noble‐metal catalysts.
Hot stuff: Hot‐injection techniques were combined with ionothermal chemistry to transform common organic solvents into nanostructured porous carbons with high yields. The same method can be further applied to synthesize various carbon/inorganic composites, for example, for electrocatalytic applications.</description><subject>Branched</subject><subject>Carbon</subject><subject>carbon nanostructures</subject><subject>Catalysts</subject><subject>composite materials</subject><subject>Doping</subject><subject>electrocatalysts</subject><subject>hot injection</subject><subject>ionothermal synthesis</subject><subject>Nanocomposites</subject><subject>Nanostructure</subject><subject>Solvents</subject><subject>Sulfur</subject><subject>Synthesis</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkc1vEzEQxS1ERUvhyhGtxIXLBo8_N8eyakOkKD20FUfLa3ubLbt2sXeB9K_HUUKEeunJY83vPY3eQ-gD4BlgTL5o37kZwcAARMVfoTPgBEoqJX2dZ0ZpKSsOp-htSg-Zryos3qBTwiXDjIszNNxs_bhxqUtFaIu19iGNcTLjFJ0tah2b4ItxE8N0vymWwYfMxkH3h1X3pMcuE1lah2HI03W8zyeZ4ib0v5wfU6G93X2mHZfeoZNW98m9P7zn6O7q8rb-Vq6uF8v6YlUaQYCXjQFHzVy20laMaTu3jnFwtqHasJZRQolrqCSZEZYLwYzmrcPWAZV5S-g5-rz3fYzh5-TSqIYuGdf32rswJQUSQw6MYJnRT8_QhzBFn69TICSDec6QZWq2p0wMKUXXqsfYDTpuFWC1K0LtilDHIrLg48F2agZnj_i_5DMw3wO_u95tX7BTF-vl5f_m5V7bpdH9OWp1_KGEpJKr7-uFWqwEfK05qFv6F0S_pPM</recordid><startdate>20150427</startdate><enddate>20150427</enddate><creator>Chang, Yuanqin</creator><creator>Antonietti, Markus</creator><creator>Fellinger, Tim-Patrick</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20150427</creationdate><title>Synthesis of Nanostructured Carbon through Ionothermal Carbonization of Common Organic Solvents and Solutions</title><author>Chang, Yuanqin ; Antonietti, Markus ; Fellinger, Tim-Patrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6215-bc1e3c97f7d844ad9de451edb3ac4f43232eb3723c96d5664ca5fe0de13743223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Branched</topic><topic>Carbon</topic><topic>carbon nanostructures</topic><topic>Catalysts</topic><topic>composite materials</topic><topic>Doping</topic><topic>electrocatalysts</topic><topic>hot injection</topic><topic>ionothermal synthesis</topic><topic>Nanocomposites</topic><topic>Nanostructure</topic><topic>Solvents</topic><topic>Sulfur</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Yuanqin</creatorcontrib><creatorcontrib>Antonietti, Markus</creatorcontrib><creatorcontrib>Fellinger, Tim-Patrick</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Yuanqin</au><au>Antonietti, Markus</au><au>Fellinger, Tim-Patrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of Nanostructured Carbon through Ionothermal Carbonization of Common Organic Solvents and Solutions</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew. Chem. Int. Ed</addtitle><date>2015-04-27</date><risdate>2015</risdate><volume>54</volume><issue>18</issue><spage>5507</spage><epage>5512</epage><pages>5507-5512</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><coden>ACIEAY</coden><abstract>A combination of ionothermal synthesis and hot‐injection techniques leads to novel nanocarbons made from organic solvents. Controlled addition of commonly used organic solvents into a hot ZnCl2 melt gives rise to spherical, sheetlike, and branched nanofibrous carbon nanoparticles with surprisingly high carbon efficiency. When heteroatom‐containing solvents were used, the doping levels reach up to 14 wt. % nitrogen and 13 wt. % sulfur. Materials with high surface areas and large pore volumes of solvent carbons as high as 1666 m2 g−1 and 2.80 cm3 g−1 in addition to CO2 adsorption capacities of 4.13 mmol g−1 at 273 K and 1 bar can be obtained. The new method works not only for pure carbon materials, but was also extended for the synthesis of carbon/inorganic nanocomposites. ZnS@C, Ni@C, and Co@C were successfully prepared with this straightforward procedure. The obtained Ni@C nanocomposites perform well in the electrocatalytic water oxidation, comparable with commercial noble‐metal catalysts.
Hot stuff: Hot‐injection techniques were combined with ionothermal chemistry to transform common organic solvents into nanostructured porous carbons with high yields. The same method can be further applied to synthesize various carbon/inorganic composites, for example, for electrocatalytic applications.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>25740456</pmid><doi>10.1002/anie.201411685</doi><tpages>6</tpages><edition>International ed. in English</edition></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2015-04, Vol.54 (18), p.5507-5512 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_1701116207 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Branched Carbon carbon nanostructures Catalysts composite materials Doping electrocatalysts hot injection ionothermal synthesis Nanocomposites Nanostructure Solvents Sulfur Synthesis |
title | Synthesis of Nanostructured Carbon through Ionothermal Carbonization of Common Organic Solvents and Solutions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A04%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20Nanostructured%20Carbon%20through%20Ionothermal%20Carbonization%20of%20Common%20Organic%20Solvents%20and%20Solutions&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Chang,%20Yuanqin&rft.date=2015-04-27&rft.volume=54&rft.issue=18&rft.spage=5507&rft.epage=5512&rft.pages=5507-5512&rft.issn=1433-7851&rft.eissn=1521-3773&rft.coden=ACIEAY&rft_id=info:doi/10.1002/anie.201411685&rft_dat=%3Cproquest_cross%3E3659326411%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1674194334&rft_id=info:pmid/25740456&rfr_iscdi=true |