Theoretical study of the magnetic anisotropy and magnetic tunnelling in mononuclear Ni(ii) complexes with potential molecular magnet behavior
Magnetic molecules that present a slow decay of their magnetization (molecular magnets) are very interesting both from a fundamental and applied points of view. While many approaches focus strongly on finding systems with strong magnetic anisotropy giving rise to large spin-reversal barriers, less i...
Gespeichert in:
Veröffentlicht in: | Chemical science (Cambridge) 2014-03, Vol.5 (4), p.1453-1462 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1462 |
---|---|
container_issue | 4 |
container_start_page | 1453 |
container_title | Chemical science (Cambridge) |
container_volume | 5 |
creator | Gruden-Pavlovic, Maja Peric, Marko Zlatar, Matija Garcia-Fernandez, Pablo |
description | Magnetic molecules that present a slow decay of their magnetization (molecular magnets) are very interesting both from a fundamental and applied points of view. While many approaches focus strongly on finding systems with strong magnetic anisotropy giving rise to large spin-reversal barriers, less is known on the behavior of magnetic tunnelling, which is also a fundamental component of molecular magnet behavior. In this work, we propose a model to describe both the spin-reversal barrier and magnetic tunnelling in Ni(ii) trigonal bipyramidal complexes, which could be easily extended to other transition-metal systems. Based on this model, we show the criteria that lead to the optimal complexes to find molecular magnet behavior. We test our proposal with multi-reference configuration-interaction (MRCI) and ligand-field-density-functional-theory (LF-DFT) first-principles calculations applied over several families of mononuclear Ni(ii) complexes. As a salient result, we find that the complex [NiCl sub(3)(Hdabco) sub(2)] super(+) (dabco is 1,4-diazabicyclo[2.2.2]-octane) displays both a very large magnetic anisotropy energy, 524 cm super(-1), and a small tunnelling splitting, 0.2 cm super(-1), when compared to other systems containing the same metal. We expect molecular magnet behaviour to be observed when small magnetic fields are employed to disrupt tunnelling. These values are reached due to the choice of ligands that favor a complete destruction of the Jahn-Teller distortions through spin-orbit coupling and an unquenched orbital momentum. |
doi_str_mv | 10.1039/c3sc52984c |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701113981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1520936651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-7ec1664654ea82ee9ced5af359b506363d34ef0528bbf9ae412fb6e15c2b626e3</originalsourceid><addsrcrecordid>eNqFkctOwzAQRS0EEhV0wxd4WZACfsRus0QVL6mCTVlHjjNpjBw72A7Qj-CfSVVEl8xmRldHdzRzEbqg5JoSXtxoHrVgxSLXR2jCSE4zKXhx_DczcoqmMb6RsTings0n6Hvdgg-QjFYWxzTUW-wbnFrAndq4nY6VM9Gn4PvtONYHPQ3OgbXGbbBxuPPOu0FbUAE_m5kxl1j7rrfwBRF_mtTi3idwyYx7Om9BD3Yk92a4glZ9GB_O0UmjbITpbz9Dr_d36-Vjtnp5eFrerjLNOU_ZHDSVMpciB7VgAIWGWqiGi6ISRHLJa55DQwRbVFVTKMgpayoJVGhWSSaBn6HZ3rcP_n2AmMrORD0eoxz4IZZ0TiilvFjQ_9HxrQWXUuzQqz2qg48xQFP2wXQqbEtKyl1C5SEh_gPffob4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1520936651</pqid></control><display><type>article</type><title>Theoretical study of the magnetic anisotropy and magnetic tunnelling in mononuclear Ni(ii) complexes with potential molecular magnet behavior</title><source>Royal Society Of Chemistry Journals 2008-</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Gruden-Pavlovic, Maja ; Peric, Marko ; Zlatar, Matija ; Garcia-Fernandez, Pablo</creator><creatorcontrib>Gruden-Pavlovic, Maja ; Peric, Marko ; Zlatar, Matija ; Garcia-Fernandez, Pablo</creatorcontrib><description>Magnetic molecules that present a slow decay of their magnetization (molecular magnets) are very interesting both from a fundamental and applied points of view. While many approaches focus strongly on finding systems with strong magnetic anisotropy giving rise to large spin-reversal barriers, less is known on the behavior of magnetic tunnelling, which is also a fundamental component of molecular magnet behavior. In this work, we propose a model to describe both the spin-reversal barrier and magnetic tunnelling in Ni(ii) trigonal bipyramidal complexes, which could be easily extended to other transition-metal systems. Based on this model, we show the criteria that lead to the optimal complexes to find molecular magnet behavior. We test our proposal with multi-reference configuration-interaction (MRCI) and ligand-field-density-functional-theory (LF-DFT) first-principles calculations applied over several families of mononuclear Ni(ii) complexes. As a salient result, we find that the complex [NiCl sub(3)(Hdabco) sub(2)] super(+) (dabco is 1,4-diazabicyclo[2.2.2]-octane) displays both a very large magnetic anisotropy energy, 524 cm super(-1), and a small tunnelling splitting, 0.2 cm super(-1), when compared to other systems containing the same metal. We expect molecular magnet behaviour to be observed when small magnetic fields are employed to disrupt tunnelling. These values are reached due to the choice of ligands that favor a complete destruction of the Jahn-Teller distortions through spin-orbit coupling and an unquenched orbital momentum.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/c3sc52984c</identifier><language>eng</language><subject>Barriers ; Displays ; Distortion ; Ligands ; Magnetic anisotropy ; Magnetic fields ; Mathematical models ; Tunnelling</subject><ispartof>Chemical science (Cambridge), 2014-03, Vol.5 (4), p.1453-1462</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-7ec1664654ea82ee9ced5af359b506363d34ef0528bbf9ae412fb6e15c2b626e3</citedby><cites>FETCH-LOGICAL-c333t-7ec1664654ea82ee9ced5af359b506363d34ef0528bbf9ae412fb6e15c2b626e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Gruden-Pavlovic, Maja</creatorcontrib><creatorcontrib>Peric, Marko</creatorcontrib><creatorcontrib>Zlatar, Matija</creatorcontrib><creatorcontrib>Garcia-Fernandez, Pablo</creatorcontrib><title>Theoretical study of the magnetic anisotropy and magnetic tunnelling in mononuclear Ni(ii) complexes with potential molecular magnet behavior</title><title>Chemical science (Cambridge)</title><description>Magnetic molecules that present a slow decay of their magnetization (molecular magnets) are very interesting both from a fundamental and applied points of view. While many approaches focus strongly on finding systems with strong magnetic anisotropy giving rise to large spin-reversal barriers, less is known on the behavior of magnetic tunnelling, which is also a fundamental component of molecular magnet behavior. In this work, we propose a model to describe both the spin-reversal barrier and magnetic tunnelling in Ni(ii) trigonal bipyramidal complexes, which could be easily extended to other transition-metal systems. Based on this model, we show the criteria that lead to the optimal complexes to find molecular magnet behavior. We test our proposal with multi-reference configuration-interaction (MRCI) and ligand-field-density-functional-theory (LF-DFT) first-principles calculations applied over several families of mononuclear Ni(ii) complexes. As a salient result, we find that the complex [NiCl sub(3)(Hdabco) sub(2)] super(+) (dabco is 1,4-diazabicyclo[2.2.2]-octane) displays both a very large magnetic anisotropy energy, 524 cm super(-1), and a small tunnelling splitting, 0.2 cm super(-1), when compared to other systems containing the same metal. We expect molecular magnet behaviour to be observed when small magnetic fields are employed to disrupt tunnelling. These values are reached due to the choice of ligands that favor a complete destruction of the Jahn-Teller distortions through spin-orbit coupling and an unquenched orbital momentum.</description><subject>Barriers</subject><subject>Displays</subject><subject>Distortion</subject><subject>Ligands</subject><subject>Magnetic anisotropy</subject><subject>Magnetic fields</subject><subject>Mathematical models</subject><subject>Tunnelling</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkctOwzAQRS0EEhV0wxd4WZACfsRus0QVL6mCTVlHjjNpjBw72A7Qj-CfSVVEl8xmRldHdzRzEbqg5JoSXtxoHrVgxSLXR2jCSE4zKXhx_DczcoqmMb6RsTings0n6Hvdgg-QjFYWxzTUW-wbnFrAndq4nY6VM9Gn4PvtONYHPQ3OgbXGbbBxuPPOu0FbUAE_m5kxl1j7rrfwBRF_mtTi3idwyYx7Om9BD3Yk92a4glZ9GB_O0UmjbITpbz9Dr_d36-Vjtnp5eFrerjLNOU_ZHDSVMpciB7VgAIWGWqiGi6ISRHLJa55DQwRbVFVTKMgpayoJVGhWSSaBn6HZ3rcP_n2AmMrORD0eoxz4IZZ0TiilvFjQ_9HxrQWXUuzQqz2qg48xQFP2wXQqbEtKyl1C5SEh_gPffob4</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Gruden-Pavlovic, Maja</creator><creator>Peric, Marko</creator><creator>Zlatar, Matija</creator><creator>Garcia-Fernandez, Pablo</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140301</creationdate><title>Theoretical study of the magnetic anisotropy and magnetic tunnelling in mononuclear Ni(ii) complexes with potential molecular magnet behavior</title><author>Gruden-Pavlovic, Maja ; Peric, Marko ; Zlatar, Matija ; Garcia-Fernandez, Pablo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-7ec1664654ea82ee9ced5af359b506363d34ef0528bbf9ae412fb6e15c2b626e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Barriers</topic><topic>Displays</topic><topic>Distortion</topic><topic>Ligands</topic><topic>Magnetic anisotropy</topic><topic>Magnetic fields</topic><topic>Mathematical models</topic><topic>Tunnelling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gruden-Pavlovic, Maja</creatorcontrib><creatorcontrib>Peric, Marko</creatorcontrib><creatorcontrib>Zlatar, Matija</creatorcontrib><creatorcontrib>Garcia-Fernandez, Pablo</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gruden-Pavlovic, Maja</au><au>Peric, Marko</au><au>Zlatar, Matija</au><au>Garcia-Fernandez, Pablo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical study of the magnetic anisotropy and magnetic tunnelling in mononuclear Ni(ii) complexes with potential molecular magnet behavior</atitle><jtitle>Chemical science (Cambridge)</jtitle><date>2014-03-01</date><risdate>2014</risdate><volume>5</volume><issue>4</issue><spage>1453</spage><epage>1462</epage><pages>1453-1462</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>Magnetic molecules that present a slow decay of their magnetization (molecular magnets) are very interesting both from a fundamental and applied points of view. While many approaches focus strongly on finding systems with strong magnetic anisotropy giving rise to large spin-reversal barriers, less is known on the behavior of magnetic tunnelling, which is also a fundamental component of molecular magnet behavior. In this work, we propose a model to describe both the spin-reversal barrier and magnetic tunnelling in Ni(ii) trigonal bipyramidal complexes, which could be easily extended to other transition-metal systems. Based on this model, we show the criteria that lead to the optimal complexes to find molecular magnet behavior. We test our proposal with multi-reference configuration-interaction (MRCI) and ligand-field-density-functional-theory (LF-DFT) first-principles calculations applied over several families of mononuclear Ni(ii) complexes. As a salient result, we find that the complex [NiCl sub(3)(Hdabco) sub(2)] super(+) (dabco is 1,4-diazabicyclo[2.2.2]-octane) displays both a very large magnetic anisotropy energy, 524 cm super(-1), and a small tunnelling splitting, 0.2 cm super(-1), when compared to other systems containing the same metal. We expect molecular magnet behaviour to be observed when small magnetic fields are employed to disrupt tunnelling. These values are reached due to the choice of ligands that favor a complete destruction of the Jahn-Teller distortions through spin-orbit coupling and an unquenched orbital momentum.</abstract><doi>10.1039/c3sc52984c</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-6520 |
ispartof | Chemical science (Cambridge), 2014-03, Vol.5 (4), p.1453-1462 |
issn | 2041-6520 2041-6539 |
language | eng |
recordid | cdi_proquest_miscellaneous_1701113981 |
source | Royal Society Of Chemistry Journals 2008-; PubMed Central; PubMed Central Open Access |
subjects | Barriers Displays Distortion Ligands Magnetic anisotropy Magnetic fields Mathematical models Tunnelling |
title | Theoretical study of the magnetic anisotropy and magnetic tunnelling in mononuclear Ni(ii) complexes with potential molecular magnet behavior |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A14%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20study%20of%20the%20magnetic%20anisotropy%20and%20magnetic%20tunnelling%20in%20mononuclear%20Ni(ii)%20complexes%20with%20potential%20molecular%20magnet%20behavior&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Gruden-Pavlovic,%20Maja&rft.date=2014-03-01&rft.volume=5&rft.issue=4&rft.spage=1453&rft.epage=1462&rft.pages=1453-1462&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/c3sc52984c&rft_dat=%3Cproquest_cross%3E1520936651%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1520936651&rft_id=info:pmid/&rfr_iscdi=true |