Aqueous Manganese Dioxide Ink for Paper-Based Capacitive Energy Storage Devices

We report a simple approach based on a chemical reduction method to synthesize aqueous inorganic ink comprised of hexagonal MnO2 nanosheets. The MnO2 ink exhibits long‐term stability and continuous thin films can be formed on various substrates without using any binder. To obtain a flexible electrod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2015-06, Vol.54 (23), p.6800-6803
Hauptverfasser: Qian, Jiasheng, Jin, Huanyu, Chen, Bolei, Lin, Mei, Lu, Wei, Tang, Wing Man, Xiong, Wei, Chan, Lai Wa Helen, Lau, Shu Ping, Yuan, Jikang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6803
container_issue 23
container_start_page 6800
container_title Angewandte Chemie International Edition
container_volume 54
creator Qian, Jiasheng
Jin, Huanyu
Chen, Bolei
Lin, Mei
Lu, Wei
Tang, Wing Man
Xiong, Wei
Chan, Lai Wa Helen
Lau, Shu Ping
Yuan, Jikang
description We report a simple approach based on a chemical reduction method to synthesize aqueous inorganic ink comprised of hexagonal MnO2 nanosheets. The MnO2 ink exhibits long‐term stability and continuous thin films can be formed on various substrates without using any binder. To obtain a flexible electrode for capacitive energy storage, the MnO2 ink was printed onto commercially available A4 paper pretreated with multiwalled carbon nanotubes. The electrode exhibited a maximum specific capacitance of 1035 F g−1 (91.7 mF cm−2). Paper‐based symmetric and asymmetric capacitors were assembled, which gave a maximum specific energy density of 25.3 Wh kg−1 and a power density of 81 kW kg−1. The device could maintain a 98.9 % capacitance retention over 10 000 cycles at 4 A g−1. The MnO2 ink could be a versatile candidate for large‐scale production of flexible and printable electronic devices for energy storage and conversion. Printing the future: A simple chemical reduction method has been used to synthesize aqueous MnO2 ink that exhibits long‐term stability and can form continuous thin films on various substrates without the need for any binder. The as‐prepared MnO2 ink can also be coated onto conductive A4 paper to form capacitive energy storage devices.
doi_str_mv 10.1002/anie.201501261
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701111020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1683757107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6211-8b1f9ea1a8b97e6c62f71ee6acb8c76f51eda661a93fdf31921f894a476f4d153</originalsourceid><addsrcrecordid>eNqFkc1vEzEQxS1ERUvhyhGtxIXLph57_bHHkIY2orQgviQu1mR3HLlNdoOdtM1_j9u0EeJSX8by_N6Tnh9jb4APgHNxhF2ggeCgOAgNz9gBKAGlNEY-z_dKytJYBfvsZUqXmbeW6xdsXyhbg5DqgF0M_6ypX6fiM3Yz7ChRcRz629BSMemuCt_H4gsuKZYfMFFbjHCJTViFayrGHcXZpvi26iPOsoquQ0PpFdvzOE_0-mEesh8fx99Hp-XZxclkNDwrGy0ASjsFXxMC2mltSOdHb4BIYzO1jdFeAbWoNWAtfesl1AK8rSus8q5qQclD9n7ru4x9TpBWbhFSQ_N5zpDjODAc8uGCP41qK40ywE1G3_2HXvbr2OUg95TMX17ZTA22VBP7lCJ5t4xhgXHjgLu7VtxdK27XSha8fbBdTxfU7vDHGjJQb4GbMKfNE3ZueD4Z_2tebrUhreh2p8V45bTJwdyv8xOnf6pj8_V35T7Jv_E3pgY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1683310048</pqid></control><display><type>article</type><title>Aqueous Manganese Dioxide Ink for Paper-Based Capacitive Energy Storage Devices</title><source>Access via Wiley Online Library</source><creator>Qian, Jiasheng ; Jin, Huanyu ; Chen, Bolei ; Lin, Mei ; Lu, Wei ; Tang, Wing Man ; Xiong, Wei ; Chan, Lai Wa Helen ; Lau, Shu Ping ; Yuan, Jikang</creator><creatorcontrib>Qian, Jiasheng ; Jin, Huanyu ; Chen, Bolei ; Lin, Mei ; Lu, Wei ; Tang, Wing Man ; Xiong, Wei ; Chan, Lai Wa Helen ; Lau, Shu Ping ; Yuan, Jikang</creatorcontrib><description>We report a simple approach based on a chemical reduction method to synthesize aqueous inorganic ink comprised of hexagonal MnO2 nanosheets. The MnO2 ink exhibits long‐term stability and continuous thin films can be formed on various substrates without using any binder. To obtain a flexible electrode for capacitive energy storage, the MnO2 ink was printed onto commercially available A4 paper pretreated with multiwalled carbon nanotubes. The electrode exhibited a maximum specific capacitance of 1035 F g−1 (91.7 mF cm−2). Paper‐based symmetric and asymmetric capacitors were assembled, which gave a maximum specific energy density of 25.3 Wh kg−1 and a power density of 81 kW kg−1. The device could maintain a 98.9 % capacitance retention over 10 000 cycles at 4 A g−1. The MnO2 ink could be a versatile candidate for large‐scale production of flexible and printable electronic devices for energy storage and conversion. Printing the future: A simple chemical reduction method has been used to synthesize aqueous MnO2 ink that exhibits long‐term stability and can form continuous thin films on various substrates without the need for any binder. The as‐prepared MnO2 ink can also be coated onto conductive A4 paper to form capacitive energy storage devices.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201501261</identifier><identifier>PMID: 25891235</identifier><identifier>CODEN: ACIEAY</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Binders ; Capacitance ; Devices ; electrochemistry ; Electrodes ; Energy storage ; energy-storage devices ; metal oxides ; MnO2 ink ; Nanotechnology ; Nanotubes ; Reduction (chemical) ; Thin films</subject><ispartof>Angewandte Chemie International Edition, 2015-06, Vol.54 (23), p.6800-6803</ispartof><rights>2015 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2015 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2015 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6211-8b1f9ea1a8b97e6c62f71ee6acb8c76f51eda661a93fdf31921f894a476f4d153</citedby><cites>FETCH-LOGICAL-c6211-8b1f9ea1a8b97e6c62f71ee6acb8c76f51eda661a93fdf31921f894a476f4d153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201501261$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201501261$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25891235$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qian, Jiasheng</creatorcontrib><creatorcontrib>Jin, Huanyu</creatorcontrib><creatorcontrib>Chen, Bolei</creatorcontrib><creatorcontrib>Lin, Mei</creatorcontrib><creatorcontrib>Lu, Wei</creatorcontrib><creatorcontrib>Tang, Wing Man</creatorcontrib><creatorcontrib>Xiong, Wei</creatorcontrib><creatorcontrib>Chan, Lai Wa Helen</creatorcontrib><creatorcontrib>Lau, Shu Ping</creatorcontrib><creatorcontrib>Yuan, Jikang</creatorcontrib><title>Aqueous Manganese Dioxide Ink for Paper-Based Capacitive Energy Storage Devices</title><title>Angewandte Chemie International Edition</title><addtitle>Angew. Chem. Int. Ed</addtitle><description>We report a simple approach based on a chemical reduction method to synthesize aqueous inorganic ink comprised of hexagonal MnO2 nanosheets. The MnO2 ink exhibits long‐term stability and continuous thin films can be formed on various substrates without using any binder. To obtain a flexible electrode for capacitive energy storage, the MnO2 ink was printed onto commercially available A4 paper pretreated with multiwalled carbon nanotubes. The electrode exhibited a maximum specific capacitance of 1035 F g−1 (91.7 mF cm−2). Paper‐based symmetric and asymmetric capacitors were assembled, which gave a maximum specific energy density of 25.3 Wh kg−1 and a power density of 81 kW kg−1. The device could maintain a 98.9 % capacitance retention over 10 000 cycles at 4 A g−1. The MnO2 ink could be a versatile candidate for large‐scale production of flexible and printable electronic devices for energy storage and conversion. Printing the future: A simple chemical reduction method has been used to synthesize aqueous MnO2 ink that exhibits long‐term stability and can form continuous thin films on various substrates without the need for any binder. The as‐prepared MnO2 ink can also be coated onto conductive A4 paper to form capacitive energy storage devices.</description><subject>Binders</subject><subject>Capacitance</subject><subject>Devices</subject><subject>electrochemistry</subject><subject>Electrodes</subject><subject>Energy storage</subject><subject>energy-storage devices</subject><subject>metal oxides</subject><subject>MnO2 ink</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Reduction (chemical)</subject><subject>Thin films</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkc1vEzEQxS1ERUvhyhGtxIXLph57_bHHkIY2orQgviQu1mR3HLlNdoOdtM1_j9u0EeJSX8by_N6Tnh9jb4APgHNxhF2ggeCgOAgNz9gBKAGlNEY-z_dKytJYBfvsZUqXmbeW6xdsXyhbg5DqgF0M_6ypX6fiM3Yz7ChRcRz629BSMemuCt_H4gsuKZYfMFFbjHCJTViFayrGHcXZpvi26iPOsoquQ0PpFdvzOE_0-mEesh8fx99Hp-XZxclkNDwrGy0ASjsFXxMC2mltSOdHb4BIYzO1jdFeAbWoNWAtfesl1AK8rSus8q5qQclD9n7ru4x9TpBWbhFSQ_N5zpDjODAc8uGCP41qK40ywE1G3_2HXvbr2OUg95TMX17ZTA22VBP7lCJ5t4xhgXHjgLu7VtxdK27XSha8fbBdTxfU7vDHGjJQb4GbMKfNE3ZueD4Z_2tebrUhreh2p8V45bTJwdyv8xOnf6pj8_V35T7Jv_E3pgY</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Qian, Jiasheng</creator><creator>Jin, Huanyu</creator><creator>Chen, Bolei</creator><creator>Lin, Mei</creator><creator>Lu, Wei</creator><creator>Tang, Wing Man</creator><creator>Xiong, Wei</creator><creator>Chan, Lai Wa Helen</creator><creator>Lau, Shu Ping</creator><creator>Yuan, Jikang</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>20150601</creationdate><title>Aqueous Manganese Dioxide Ink for Paper-Based Capacitive Energy Storage Devices</title><author>Qian, Jiasheng ; Jin, Huanyu ; Chen, Bolei ; Lin, Mei ; Lu, Wei ; Tang, Wing Man ; Xiong, Wei ; Chan, Lai Wa Helen ; Lau, Shu Ping ; Yuan, Jikang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6211-8b1f9ea1a8b97e6c62f71ee6acb8c76f51eda661a93fdf31921f894a476f4d153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Binders</topic><topic>Capacitance</topic><topic>Devices</topic><topic>electrochemistry</topic><topic>Electrodes</topic><topic>Energy storage</topic><topic>energy-storage devices</topic><topic>metal oxides</topic><topic>MnO2 ink</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Reduction (chemical)</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qian, Jiasheng</creatorcontrib><creatorcontrib>Jin, Huanyu</creatorcontrib><creatorcontrib>Chen, Bolei</creatorcontrib><creatorcontrib>Lin, Mei</creatorcontrib><creatorcontrib>Lu, Wei</creatorcontrib><creatorcontrib>Tang, Wing Man</creatorcontrib><creatorcontrib>Xiong, Wei</creatorcontrib><creatorcontrib>Chan, Lai Wa Helen</creatorcontrib><creatorcontrib>Lau, Shu Ping</creatorcontrib><creatorcontrib>Yuan, Jikang</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qian, Jiasheng</au><au>Jin, Huanyu</au><au>Chen, Bolei</au><au>Lin, Mei</au><au>Lu, Wei</au><au>Tang, Wing Man</au><au>Xiong, Wei</au><au>Chan, Lai Wa Helen</au><au>Lau, Shu Ping</au><au>Yuan, Jikang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aqueous Manganese Dioxide Ink for Paper-Based Capacitive Energy Storage Devices</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew. Chem. Int. Ed</addtitle><date>2015-06-01</date><risdate>2015</risdate><volume>54</volume><issue>23</issue><spage>6800</spage><epage>6803</epage><pages>6800-6803</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><coden>ACIEAY</coden><abstract>We report a simple approach based on a chemical reduction method to synthesize aqueous inorganic ink comprised of hexagonal MnO2 nanosheets. The MnO2 ink exhibits long‐term stability and continuous thin films can be formed on various substrates without using any binder. To obtain a flexible electrode for capacitive energy storage, the MnO2 ink was printed onto commercially available A4 paper pretreated with multiwalled carbon nanotubes. The electrode exhibited a maximum specific capacitance of 1035 F g−1 (91.7 mF cm−2). Paper‐based symmetric and asymmetric capacitors were assembled, which gave a maximum specific energy density of 25.3 Wh kg−1 and a power density of 81 kW kg−1. The device could maintain a 98.9 % capacitance retention over 10 000 cycles at 4 A g−1. The MnO2 ink could be a versatile candidate for large‐scale production of flexible and printable electronic devices for energy storage and conversion. Printing the future: A simple chemical reduction method has been used to synthesize aqueous MnO2 ink that exhibits long‐term stability and can form continuous thin films on various substrates without the need for any binder. The as‐prepared MnO2 ink can also be coated onto conductive A4 paper to form capacitive energy storage devices.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>25891235</pmid><doi>10.1002/anie.201501261</doi><tpages>4</tpages><edition>International ed. in English</edition></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2015-06, Vol.54 (23), p.6800-6803
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_1701111020
source Access via Wiley Online Library
subjects Binders
Capacitance
Devices
electrochemistry
Electrodes
Energy storage
energy-storage devices
metal oxides
MnO2 ink
Nanotechnology
Nanotubes
Reduction (chemical)
Thin films
title Aqueous Manganese Dioxide Ink for Paper-Based Capacitive Energy Storage Devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T06%3A47%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aqueous%20Manganese%20Dioxide%20Ink%20for%20Paper-Based%20Capacitive%20Energy%20Storage%20Devices&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Qian,%20Jiasheng&rft.date=2015-06-01&rft.volume=54&rft.issue=23&rft.spage=6800&rft.epage=6803&rft.pages=6800-6803&rft.issn=1433-7851&rft.eissn=1521-3773&rft.coden=ACIEAY&rft_id=info:doi/10.1002/anie.201501261&rft_dat=%3Cproquest_cross%3E1683757107%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1683310048&rft_id=info:pmid/25891235&rfr_iscdi=true