Aqueous Manganese Dioxide Ink for Paper-Based Capacitive Energy Storage Devices
We report a simple approach based on a chemical reduction method to synthesize aqueous inorganic ink comprised of hexagonal MnO2 nanosheets. The MnO2 ink exhibits long‐term stability and continuous thin films can be formed on various substrates without using any binder. To obtain a flexible electrod...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2015-06, Vol.54 (23), p.6800-6803 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6803 |
---|---|
container_issue | 23 |
container_start_page | 6800 |
container_title | Angewandte Chemie International Edition |
container_volume | 54 |
creator | Qian, Jiasheng Jin, Huanyu Chen, Bolei Lin, Mei Lu, Wei Tang, Wing Man Xiong, Wei Chan, Lai Wa Helen Lau, Shu Ping Yuan, Jikang |
description | We report a simple approach based on a chemical reduction method to synthesize aqueous inorganic ink comprised of hexagonal MnO2 nanosheets. The MnO2 ink exhibits long‐term stability and continuous thin films can be formed on various substrates without using any binder. To obtain a flexible electrode for capacitive energy storage, the MnO2 ink was printed onto commercially available A4 paper pretreated with multiwalled carbon nanotubes. The electrode exhibited a maximum specific capacitance of 1035 F g−1 (91.7 mF cm−2). Paper‐based symmetric and asymmetric capacitors were assembled, which gave a maximum specific energy density of 25.3 Wh kg−1 and a power density of 81 kW kg−1. The device could maintain a 98.9 % capacitance retention over 10 000 cycles at 4 A g−1. The MnO2 ink could be a versatile candidate for large‐scale production of flexible and printable electronic devices for energy storage and conversion.
Printing the future: A simple chemical reduction method has been used to synthesize aqueous MnO2 ink that exhibits long‐term stability and can form continuous thin films on various substrates without the need for any binder. The as‐prepared MnO2 ink can also be coated onto conductive A4 paper to form capacitive energy storage devices. |
doi_str_mv | 10.1002/anie.201501261 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701111020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1683757107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6211-8b1f9ea1a8b97e6c62f71ee6acb8c76f51eda661a93fdf31921f894a476f4d153</originalsourceid><addsrcrecordid>eNqFkc1vEzEQxS1ERUvhyhGtxIXLph57_bHHkIY2orQgviQu1mR3HLlNdoOdtM1_j9u0EeJSX8by_N6Tnh9jb4APgHNxhF2ggeCgOAgNz9gBKAGlNEY-z_dKytJYBfvsZUqXmbeW6xdsXyhbg5DqgF0M_6ypX6fiM3Yz7ChRcRz629BSMemuCt_H4gsuKZYfMFFbjHCJTViFayrGHcXZpvi26iPOsoquQ0PpFdvzOE_0-mEesh8fx99Hp-XZxclkNDwrGy0ASjsFXxMC2mltSOdHb4BIYzO1jdFeAbWoNWAtfesl1AK8rSus8q5qQclD9n7ru4x9TpBWbhFSQ_N5zpDjODAc8uGCP41qK40ywE1G3_2HXvbr2OUg95TMX17ZTA22VBP7lCJ5t4xhgXHjgLu7VtxdK27XSha8fbBdTxfU7vDHGjJQb4GbMKfNE3ZueD4Z_2tebrUhreh2p8V45bTJwdyv8xOnf6pj8_V35T7Jv_E3pgY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1683310048</pqid></control><display><type>article</type><title>Aqueous Manganese Dioxide Ink for Paper-Based Capacitive Energy Storage Devices</title><source>Access via Wiley Online Library</source><creator>Qian, Jiasheng ; Jin, Huanyu ; Chen, Bolei ; Lin, Mei ; Lu, Wei ; Tang, Wing Man ; Xiong, Wei ; Chan, Lai Wa Helen ; Lau, Shu Ping ; Yuan, Jikang</creator><creatorcontrib>Qian, Jiasheng ; Jin, Huanyu ; Chen, Bolei ; Lin, Mei ; Lu, Wei ; Tang, Wing Man ; Xiong, Wei ; Chan, Lai Wa Helen ; Lau, Shu Ping ; Yuan, Jikang</creatorcontrib><description>We report a simple approach based on a chemical reduction method to synthesize aqueous inorganic ink comprised of hexagonal MnO2 nanosheets. The MnO2 ink exhibits long‐term stability and continuous thin films can be formed on various substrates without using any binder. To obtain a flexible electrode for capacitive energy storage, the MnO2 ink was printed onto commercially available A4 paper pretreated with multiwalled carbon nanotubes. The electrode exhibited a maximum specific capacitance of 1035 F g−1 (91.7 mF cm−2). Paper‐based symmetric and asymmetric capacitors were assembled, which gave a maximum specific energy density of 25.3 Wh kg−1 and a power density of 81 kW kg−1. The device could maintain a 98.9 % capacitance retention over 10 000 cycles at 4 A g−1. The MnO2 ink could be a versatile candidate for large‐scale production of flexible and printable electronic devices for energy storage and conversion.
Printing the future: A simple chemical reduction method has been used to synthesize aqueous MnO2 ink that exhibits long‐term stability and can form continuous thin films on various substrates without the need for any binder. The as‐prepared MnO2 ink can also be coated onto conductive A4 paper to form capacitive energy storage devices.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201501261</identifier><identifier>PMID: 25891235</identifier><identifier>CODEN: ACIEAY</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Binders ; Capacitance ; Devices ; electrochemistry ; Electrodes ; Energy storage ; energy-storage devices ; metal oxides ; MnO2 ink ; Nanotechnology ; Nanotubes ; Reduction (chemical) ; Thin films</subject><ispartof>Angewandte Chemie International Edition, 2015-06, Vol.54 (23), p.6800-6803</ispartof><rights>2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6211-8b1f9ea1a8b97e6c62f71ee6acb8c76f51eda661a93fdf31921f894a476f4d153</citedby><cites>FETCH-LOGICAL-c6211-8b1f9ea1a8b97e6c62f71ee6acb8c76f51eda661a93fdf31921f894a476f4d153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201501261$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201501261$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25891235$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qian, Jiasheng</creatorcontrib><creatorcontrib>Jin, Huanyu</creatorcontrib><creatorcontrib>Chen, Bolei</creatorcontrib><creatorcontrib>Lin, Mei</creatorcontrib><creatorcontrib>Lu, Wei</creatorcontrib><creatorcontrib>Tang, Wing Man</creatorcontrib><creatorcontrib>Xiong, Wei</creatorcontrib><creatorcontrib>Chan, Lai Wa Helen</creatorcontrib><creatorcontrib>Lau, Shu Ping</creatorcontrib><creatorcontrib>Yuan, Jikang</creatorcontrib><title>Aqueous Manganese Dioxide Ink for Paper-Based Capacitive Energy Storage Devices</title><title>Angewandte Chemie International Edition</title><addtitle>Angew. Chem. Int. Ed</addtitle><description>We report a simple approach based on a chemical reduction method to synthesize aqueous inorganic ink comprised of hexagonal MnO2 nanosheets. The MnO2 ink exhibits long‐term stability and continuous thin films can be formed on various substrates without using any binder. To obtain a flexible electrode for capacitive energy storage, the MnO2 ink was printed onto commercially available A4 paper pretreated with multiwalled carbon nanotubes. The electrode exhibited a maximum specific capacitance of 1035 F g−1 (91.7 mF cm−2). Paper‐based symmetric and asymmetric capacitors were assembled, which gave a maximum specific energy density of 25.3 Wh kg−1 and a power density of 81 kW kg−1. The device could maintain a 98.9 % capacitance retention over 10 000 cycles at 4 A g−1. The MnO2 ink could be a versatile candidate for large‐scale production of flexible and printable electronic devices for energy storage and conversion.
Printing the future: A simple chemical reduction method has been used to synthesize aqueous MnO2 ink that exhibits long‐term stability and can form continuous thin films on various substrates without the need for any binder. The as‐prepared MnO2 ink can also be coated onto conductive A4 paper to form capacitive energy storage devices.</description><subject>Binders</subject><subject>Capacitance</subject><subject>Devices</subject><subject>electrochemistry</subject><subject>Electrodes</subject><subject>Energy storage</subject><subject>energy-storage devices</subject><subject>metal oxides</subject><subject>MnO2 ink</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Reduction (chemical)</subject><subject>Thin films</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkc1vEzEQxS1ERUvhyhGtxIXLph57_bHHkIY2orQgviQu1mR3HLlNdoOdtM1_j9u0EeJSX8by_N6Tnh9jb4APgHNxhF2ggeCgOAgNz9gBKAGlNEY-z_dKytJYBfvsZUqXmbeW6xdsXyhbg5DqgF0M_6ypX6fiM3Yz7ChRcRz629BSMemuCt_H4gsuKZYfMFFbjHCJTViFayrGHcXZpvi26iPOsoquQ0PpFdvzOE_0-mEesh8fx99Hp-XZxclkNDwrGy0ASjsFXxMC2mltSOdHb4BIYzO1jdFeAbWoNWAtfesl1AK8rSus8q5qQclD9n7ru4x9TpBWbhFSQ_N5zpDjODAc8uGCP41qK40ywE1G3_2HXvbr2OUg95TMX17ZTA22VBP7lCJ5t4xhgXHjgLu7VtxdK27XSha8fbBdTxfU7vDHGjJQb4GbMKfNE3ZueD4Z_2tebrUhreh2p8V45bTJwdyv8xOnf6pj8_V35T7Jv_E3pgY</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Qian, Jiasheng</creator><creator>Jin, Huanyu</creator><creator>Chen, Bolei</creator><creator>Lin, Mei</creator><creator>Lu, Wei</creator><creator>Tang, Wing Man</creator><creator>Xiong, Wei</creator><creator>Chan, Lai Wa Helen</creator><creator>Lau, Shu Ping</creator><creator>Yuan, Jikang</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>20150601</creationdate><title>Aqueous Manganese Dioxide Ink for Paper-Based Capacitive Energy Storage Devices</title><author>Qian, Jiasheng ; Jin, Huanyu ; Chen, Bolei ; Lin, Mei ; Lu, Wei ; Tang, Wing Man ; Xiong, Wei ; Chan, Lai Wa Helen ; Lau, Shu Ping ; Yuan, Jikang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6211-8b1f9ea1a8b97e6c62f71ee6acb8c76f51eda661a93fdf31921f894a476f4d153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Binders</topic><topic>Capacitance</topic><topic>Devices</topic><topic>electrochemistry</topic><topic>Electrodes</topic><topic>Energy storage</topic><topic>energy-storage devices</topic><topic>metal oxides</topic><topic>MnO2 ink</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Reduction (chemical)</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qian, Jiasheng</creatorcontrib><creatorcontrib>Jin, Huanyu</creatorcontrib><creatorcontrib>Chen, Bolei</creatorcontrib><creatorcontrib>Lin, Mei</creatorcontrib><creatorcontrib>Lu, Wei</creatorcontrib><creatorcontrib>Tang, Wing Man</creatorcontrib><creatorcontrib>Xiong, Wei</creatorcontrib><creatorcontrib>Chan, Lai Wa Helen</creatorcontrib><creatorcontrib>Lau, Shu Ping</creatorcontrib><creatorcontrib>Yuan, Jikang</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qian, Jiasheng</au><au>Jin, Huanyu</au><au>Chen, Bolei</au><au>Lin, Mei</au><au>Lu, Wei</au><au>Tang, Wing Man</au><au>Xiong, Wei</au><au>Chan, Lai Wa Helen</au><au>Lau, Shu Ping</au><au>Yuan, Jikang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aqueous Manganese Dioxide Ink for Paper-Based Capacitive Energy Storage Devices</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew. Chem. Int. Ed</addtitle><date>2015-06-01</date><risdate>2015</risdate><volume>54</volume><issue>23</issue><spage>6800</spage><epage>6803</epage><pages>6800-6803</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><coden>ACIEAY</coden><abstract>We report a simple approach based on a chemical reduction method to synthesize aqueous inorganic ink comprised of hexagonal MnO2 nanosheets. The MnO2 ink exhibits long‐term stability and continuous thin films can be formed on various substrates without using any binder. To obtain a flexible electrode for capacitive energy storage, the MnO2 ink was printed onto commercially available A4 paper pretreated with multiwalled carbon nanotubes. The electrode exhibited a maximum specific capacitance of 1035 F g−1 (91.7 mF cm−2). Paper‐based symmetric and asymmetric capacitors were assembled, which gave a maximum specific energy density of 25.3 Wh kg−1 and a power density of 81 kW kg−1. The device could maintain a 98.9 % capacitance retention over 10 000 cycles at 4 A g−1. The MnO2 ink could be a versatile candidate for large‐scale production of flexible and printable electronic devices for energy storage and conversion.
Printing the future: A simple chemical reduction method has been used to synthesize aqueous MnO2 ink that exhibits long‐term stability and can form continuous thin films on various substrates without the need for any binder. The as‐prepared MnO2 ink can also be coated onto conductive A4 paper to form capacitive energy storage devices.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>25891235</pmid><doi>10.1002/anie.201501261</doi><tpages>4</tpages><edition>International ed. in English</edition></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2015-06, Vol.54 (23), p.6800-6803 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_1701111020 |
source | Access via Wiley Online Library |
subjects | Binders Capacitance Devices electrochemistry Electrodes Energy storage energy-storage devices metal oxides MnO2 ink Nanotechnology Nanotubes Reduction (chemical) Thin films |
title | Aqueous Manganese Dioxide Ink for Paper-Based Capacitive Energy Storage Devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T06%3A47%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aqueous%20Manganese%20Dioxide%20Ink%20for%20Paper-Based%20Capacitive%20Energy%20Storage%20Devices&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Qian,%20Jiasheng&rft.date=2015-06-01&rft.volume=54&rft.issue=23&rft.spage=6800&rft.epage=6803&rft.pages=6800-6803&rft.issn=1433-7851&rft.eissn=1521-3773&rft.coden=ACIEAY&rft_id=info:doi/10.1002/anie.201501261&rft_dat=%3Cproquest_cross%3E1683757107%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1683310048&rft_id=info:pmid/25891235&rfr_iscdi=true |