Research on Collaborative Path Planning Algorithm Based on Genetic Algorithm

A collaborative path planning algorithm for multiple unmanned aerial vehicles(UAV)based on genetic algorithm(GA)was presented, which adopts Double-layer evolution mechanism. Each UAV generates a population containing multiple feasible paths for the evolution of lower layer. The population which cont...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Danjian yu Zhidao Xuebao / Journal of Projectiles, Rockets, Missiles and Guidance Rockets, Missiles and Guidance, 2014-02, Vol.34 (1), p.46-50
Hauptverfasser: Zhao, Qinglu, Zhou, Chengping
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 50
container_issue 1
container_start_page 46
container_title Danjian yu Zhidao Xuebao / Journal of Projectiles, Rockets, Missiles and Guidance
container_volume 34
creator Zhao, Qinglu
Zhou, Chengping
description A collaborative path planning algorithm for multiple unmanned aerial vehicles(UAV)based on genetic algorithm(GA)was presented, which adopts Double-layer evolution mechanism. Each UAV generates a population containing multiple feasible paths for the evolution of lower layer. The population which contains different combination of specific paths is generated for the evolution of upper layer. Experimental results demonstrate that the proposed algorithm can obtain near-optimal paths quickly and makes the convergence speed faster under the guidance of state matrix and new guide information than standard GA.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701108857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1559722403</sourcerecordid><originalsourceid>FETCH-LOGICAL-p667-88cee7c92c9b9992dd83f46e1fa68b5efd7d53f755c2ddce98e3b1e7fd07dc563</originalsourceid><addsrcrecordid>eNqFkLFqwzAURTW00JDmHzRmMUhWpCeNiWnTgqGhZA-y9BQLHCm1nH5_XVro2OkO53C53Duy4ApEZaDWD2RVSuyY5AJqbtiCtO9Y0I6upznRJg-D7fJop_iJ9GCnnh4Gm1JMZ7odznmMU3-hO1vQf-t7TDhF94ceyX2wQ8HVby7J8fnp2LxU7dv-tdm21VUpqLR2iOBM7UxnjKm91yJsFPJgle4kBg9eigBSupk5NBpFxxGCZ-CdVGJJ1j-11zF_3LBMp0ssDuftCfOtnDgwzpnWEv5XpZx_qTdMiC8lAFng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1559722403</pqid></control><display><type>article</type><title>Research on Collaborative Path Planning Algorithm Based on Genetic Algorithm</title><source>Alma/SFX Local Collection</source><creator>Zhao, Qinglu ; Zhou, Chengping</creator><creatorcontrib>Zhao, Qinglu ; Zhou, Chengping</creatorcontrib><description>A collaborative path planning algorithm for multiple unmanned aerial vehicles(UAV)based on genetic algorithm(GA)was presented, which adopts Double-layer evolution mechanism. Each UAV generates a population containing multiple feasible paths for the evolution of lower layer. The population which contains different combination of specific paths is generated for the evolution of upper layer. Experimental results demonstrate that the proposed algorithm can obtain near-optimal paths quickly and makes the convergence speed faster under the guidance of state matrix and new guide information than standard GA.</description><identifier>ISSN: 1673-9728</identifier><language>chi</language><subject>Algorithms ; Convergence ; Evolution ; Genetic algorithms ; Genetics ; Path planning ; Unmanned aerial vehicles</subject><ispartof>Danjian yu Zhidao Xuebao / Journal of Projectiles, Rockets, Missiles and Guidance, 2014-02, Vol.34 (1), p.46-50</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785</link.rule.ids></links><search><creatorcontrib>Zhao, Qinglu</creatorcontrib><creatorcontrib>Zhou, Chengping</creatorcontrib><title>Research on Collaborative Path Planning Algorithm Based on Genetic Algorithm</title><title>Danjian yu Zhidao Xuebao / Journal of Projectiles, Rockets, Missiles and Guidance</title><description>A collaborative path planning algorithm for multiple unmanned aerial vehicles(UAV)based on genetic algorithm(GA)was presented, which adopts Double-layer evolution mechanism. Each UAV generates a population containing multiple feasible paths for the evolution of lower layer. The population which contains different combination of specific paths is generated for the evolution of upper layer. Experimental results demonstrate that the proposed algorithm can obtain near-optimal paths quickly and makes the convergence speed faster under the guidance of state matrix and new guide information than standard GA.</description><subject>Algorithms</subject><subject>Convergence</subject><subject>Evolution</subject><subject>Genetic algorithms</subject><subject>Genetics</subject><subject>Path planning</subject><subject>Unmanned aerial vehicles</subject><issn>1673-9728</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkLFqwzAURTW00JDmHzRmMUhWpCeNiWnTgqGhZA-y9BQLHCm1nH5_XVro2OkO53C53Duy4ApEZaDWD2RVSuyY5AJqbtiCtO9Y0I6upznRJg-D7fJop_iJ9GCnnh4Gm1JMZ7odznmMU3-hO1vQf-t7TDhF94ceyX2wQ8HVby7J8fnp2LxU7dv-tdm21VUpqLR2iOBM7UxnjKm91yJsFPJgle4kBg9eigBSupk5NBpFxxGCZ-CdVGJJ1j-11zF_3LBMp0ssDuftCfOtnDgwzpnWEv5XpZx_qTdMiC8lAFng</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Zhao, Qinglu</creator><creator>Zhou, Chengping</creator><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140201</creationdate><title>Research on Collaborative Path Planning Algorithm Based on Genetic Algorithm</title><author>Zhao, Qinglu ; Zhou, Chengping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p667-88cee7c92c9b9992dd83f46e1fa68b5efd7d53f755c2ddce98e3b1e7fd07dc563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Convergence</topic><topic>Evolution</topic><topic>Genetic algorithms</topic><topic>Genetics</topic><topic>Path planning</topic><topic>Unmanned aerial vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Qinglu</creatorcontrib><creatorcontrib>Zhou, Chengping</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Danjian yu Zhidao Xuebao / Journal of Projectiles, Rockets, Missiles and Guidance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Qinglu</au><au>Zhou, Chengping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on Collaborative Path Planning Algorithm Based on Genetic Algorithm</atitle><jtitle>Danjian yu Zhidao Xuebao / Journal of Projectiles, Rockets, Missiles and Guidance</jtitle><date>2014-02-01</date><risdate>2014</risdate><volume>34</volume><issue>1</issue><spage>46</spage><epage>50</epage><pages>46-50</pages><issn>1673-9728</issn><abstract>A collaborative path planning algorithm for multiple unmanned aerial vehicles(UAV)based on genetic algorithm(GA)was presented, which adopts Double-layer evolution mechanism. Each UAV generates a population containing multiple feasible paths for the evolution of lower layer. The population which contains different combination of specific paths is generated for the evolution of upper layer. Experimental results demonstrate that the proposed algorithm can obtain near-optimal paths quickly and makes the convergence speed faster under the guidance of state matrix and new guide information than standard GA.</abstract><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1673-9728
ispartof Danjian yu Zhidao Xuebao / Journal of Projectiles, Rockets, Missiles and Guidance, 2014-02, Vol.34 (1), p.46-50
issn 1673-9728
language chi
recordid cdi_proquest_miscellaneous_1701108857
source Alma/SFX Local Collection
subjects Algorithms
Convergence
Evolution
Genetic algorithms
Genetics
Path planning
Unmanned aerial vehicles
title Research on Collaborative Path Planning Algorithm Based on Genetic Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T17%3A27%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20Collaborative%20Path%20Planning%20Algorithm%20Based%20on%20Genetic%20Algorithm&rft.jtitle=Danjian%20yu%20Zhidao%20Xuebao%20/%20Journal%20of%20Projectiles,%20Rockets,%20Missiles%20and%20Guidance&rft.au=Zhao,%20Qinglu&rft.date=2014-02-01&rft.volume=34&rft.issue=1&rft.spage=46&rft.epage=50&rft.pages=46-50&rft.issn=1673-9728&rft_id=info:doi/&rft_dat=%3Cproquest%3E1559722403%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1559722403&rft_id=info:pmid/&rfr_iscdi=true