Research on Collaborative Path Planning Algorithm Based on Genetic Algorithm
A collaborative path planning algorithm for multiple unmanned aerial vehicles(UAV)based on genetic algorithm(GA)was presented, which adopts Double-layer evolution mechanism. Each UAV generates a population containing multiple feasible paths for the evolution of lower layer. The population which cont...
Gespeichert in:
Veröffentlicht in: | Danjian yu Zhidao Xuebao / Journal of Projectiles, Rockets, Missiles and Guidance Rockets, Missiles and Guidance, 2014-02, Vol.34 (1), p.46-50 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | chi |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 50 |
---|---|
container_issue | 1 |
container_start_page | 46 |
container_title | Danjian yu Zhidao Xuebao / Journal of Projectiles, Rockets, Missiles and Guidance |
container_volume | 34 |
creator | Zhao, Qinglu Zhou, Chengping |
description | A collaborative path planning algorithm for multiple unmanned aerial vehicles(UAV)based on genetic algorithm(GA)was presented, which adopts Double-layer evolution mechanism. Each UAV generates a population containing multiple feasible paths for the evolution of lower layer. The population which contains different combination of specific paths is generated for the evolution of upper layer. Experimental results demonstrate that the proposed algorithm can obtain near-optimal paths quickly and makes the convergence speed faster under the guidance of state matrix and new guide information than standard GA. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701108857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1559722403</sourcerecordid><originalsourceid>FETCH-LOGICAL-p667-88cee7c92c9b9992dd83f46e1fa68b5efd7d53f755c2ddce98e3b1e7fd07dc563</originalsourceid><addsrcrecordid>eNqFkLFqwzAURTW00JDmHzRmMUhWpCeNiWnTgqGhZA-y9BQLHCm1nH5_XVro2OkO53C53Duy4ApEZaDWD2RVSuyY5AJqbtiCtO9Y0I6upznRJg-D7fJop_iJ9GCnnh4Gm1JMZ7odznmMU3-hO1vQf-t7TDhF94ceyX2wQ8HVby7J8fnp2LxU7dv-tdm21VUpqLR2iOBM7UxnjKm91yJsFPJgle4kBg9eigBSupk5NBpFxxGCZ-CdVGJJ1j-11zF_3LBMp0ssDuftCfOtnDgwzpnWEv5XpZx_qTdMiC8lAFng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1559722403</pqid></control><display><type>article</type><title>Research on Collaborative Path Planning Algorithm Based on Genetic Algorithm</title><source>Alma/SFX Local Collection</source><creator>Zhao, Qinglu ; Zhou, Chengping</creator><creatorcontrib>Zhao, Qinglu ; Zhou, Chengping</creatorcontrib><description>A collaborative path planning algorithm for multiple unmanned aerial vehicles(UAV)based on genetic algorithm(GA)was presented, which adopts Double-layer evolution mechanism. Each UAV generates a population containing multiple feasible paths for the evolution of lower layer. The population which contains different combination of specific paths is generated for the evolution of upper layer. Experimental results demonstrate that the proposed algorithm can obtain near-optimal paths quickly and makes the convergence speed faster under the guidance of state matrix and new guide information than standard GA.</description><identifier>ISSN: 1673-9728</identifier><language>chi</language><subject>Algorithms ; Convergence ; Evolution ; Genetic algorithms ; Genetics ; Path planning ; Unmanned aerial vehicles</subject><ispartof>Danjian yu Zhidao Xuebao / Journal of Projectiles, Rockets, Missiles and Guidance, 2014-02, Vol.34 (1), p.46-50</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785</link.rule.ids></links><search><creatorcontrib>Zhao, Qinglu</creatorcontrib><creatorcontrib>Zhou, Chengping</creatorcontrib><title>Research on Collaborative Path Planning Algorithm Based on Genetic Algorithm</title><title>Danjian yu Zhidao Xuebao / Journal of Projectiles, Rockets, Missiles and Guidance</title><description>A collaborative path planning algorithm for multiple unmanned aerial vehicles(UAV)based on genetic algorithm(GA)was presented, which adopts Double-layer evolution mechanism. Each UAV generates a population containing multiple feasible paths for the evolution of lower layer. The population which contains different combination of specific paths is generated for the evolution of upper layer. Experimental results demonstrate that the proposed algorithm can obtain near-optimal paths quickly and makes the convergence speed faster under the guidance of state matrix and new guide information than standard GA.</description><subject>Algorithms</subject><subject>Convergence</subject><subject>Evolution</subject><subject>Genetic algorithms</subject><subject>Genetics</subject><subject>Path planning</subject><subject>Unmanned aerial vehicles</subject><issn>1673-9728</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkLFqwzAURTW00JDmHzRmMUhWpCeNiWnTgqGhZA-y9BQLHCm1nH5_XVro2OkO53C53Duy4ApEZaDWD2RVSuyY5AJqbtiCtO9Y0I6upznRJg-D7fJop_iJ9GCnnh4Gm1JMZ7odznmMU3-hO1vQf-t7TDhF94ceyX2wQ8HVby7J8fnp2LxU7dv-tdm21VUpqLR2iOBM7UxnjKm91yJsFPJgle4kBg9eigBSupk5NBpFxxGCZ-CdVGJJ1j-11zF_3LBMp0ssDuftCfOtnDgwzpnWEv5XpZx_qTdMiC8lAFng</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Zhao, Qinglu</creator><creator>Zhou, Chengping</creator><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140201</creationdate><title>Research on Collaborative Path Planning Algorithm Based on Genetic Algorithm</title><author>Zhao, Qinglu ; Zhou, Chengping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p667-88cee7c92c9b9992dd83f46e1fa68b5efd7d53f755c2ddce98e3b1e7fd07dc563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Convergence</topic><topic>Evolution</topic><topic>Genetic algorithms</topic><topic>Genetics</topic><topic>Path planning</topic><topic>Unmanned aerial vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Qinglu</creatorcontrib><creatorcontrib>Zhou, Chengping</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Danjian yu Zhidao Xuebao / Journal of Projectiles, Rockets, Missiles and Guidance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Qinglu</au><au>Zhou, Chengping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on Collaborative Path Planning Algorithm Based on Genetic Algorithm</atitle><jtitle>Danjian yu Zhidao Xuebao / Journal of Projectiles, Rockets, Missiles and Guidance</jtitle><date>2014-02-01</date><risdate>2014</risdate><volume>34</volume><issue>1</issue><spage>46</spage><epage>50</epage><pages>46-50</pages><issn>1673-9728</issn><abstract>A collaborative path planning algorithm for multiple unmanned aerial vehicles(UAV)based on genetic algorithm(GA)was presented, which adopts Double-layer evolution mechanism. Each UAV generates a population containing multiple feasible paths for the evolution of lower layer. The population which contains different combination of specific paths is generated for the evolution of upper layer. Experimental results demonstrate that the proposed algorithm can obtain near-optimal paths quickly and makes the convergence speed faster under the guidance of state matrix and new guide information than standard GA.</abstract><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1673-9728 |
ispartof | Danjian yu Zhidao Xuebao / Journal of Projectiles, Rockets, Missiles and Guidance, 2014-02, Vol.34 (1), p.46-50 |
issn | 1673-9728 |
language | chi |
recordid | cdi_proquest_miscellaneous_1701108857 |
source | Alma/SFX Local Collection |
subjects | Algorithms Convergence Evolution Genetic algorithms Genetics Path planning Unmanned aerial vehicles |
title | Research on Collaborative Path Planning Algorithm Based on Genetic Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T17%3A27%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20Collaborative%20Path%20Planning%20Algorithm%20Based%20on%20Genetic%20Algorithm&rft.jtitle=Danjian%20yu%20Zhidao%20Xuebao%20/%20Journal%20of%20Projectiles,%20Rockets,%20Missiles%20and%20Guidance&rft.au=Zhao,%20Qinglu&rft.date=2014-02-01&rft.volume=34&rft.issue=1&rft.spage=46&rft.epage=50&rft.pages=46-50&rft.issn=1673-9728&rft_id=info:doi/&rft_dat=%3Cproquest%3E1559722403%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1559722403&rft_id=info:pmid/&rfr_iscdi=true |