Incomplete interval fuzzy preference relations for supplier selection in supply chain management
In the analytical hierarchy process (AHP), it needs the decision maker to establish a pairwise comparison matrix requires n(n-1)/2 judgments for a level with n criteria (or alternatives). In some instances, the decision maker may have to deal with the problems in which only partial information and u...
Gespeichert in:
Veröffentlicht in: | Technological and economic development of economy 2015-05, Vol.21 (3), p.379-404 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 404 |
---|---|
container_issue | 3 |
container_start_page | 379 |
container_title | Technological and economic development of economy |
container_volume | 21 |
creator | Xu, Yejun Patnayakuni, Ravi Tao, Feifei Wang, Huimin |
description | In the analytical hierarchy process (AHP), it needs the decision maker to establish a pairwise comparison matrix requires n(n-1)/2 judgments for a level with n criteria (or alternatives). In some instances, the decision maker may have to deal with the problems in which only partial information and uncertain preference relation is available. Consequently, the decision maker may provide interval fuzzy preference relation with incomplete information. In this paper, we focus our attention on the investigation of incomplete interval fuzzy preference relation. We first extend a characterization to the interval fuzzy preference relation which is based on the additive transitivity property. Using the characterization, we propose a method to construct interval additive consistent fuzzy preference relations from a set of n-1 preference data. The study reveals that the proposed method can not only alleviate the comparisons, but also ensure interval preference relations with the additive consistent property. We also develop a novel procedure to deal with the analytic hierarchy problem for group decision making with incomplete interval fuzzy preference relations. Finally, a numerical example is illustrated and a supplier selection case in supply chain management is investigated using the proposed method. |
doi_str_mv | 10.3846/20294913.2013.876688 |
format | Article |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701104393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_553558b6aed545b290917c73412cd586</doaj_id><sourcerecordid>1701104393</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-eabfb76566da923a789091b26cf26339f3d64d6e86061974c4bc10123ebb0c6a3</originalsourceid><addsrcrecordid>eNp9UctO5DAQjNAigWD-gEOOXAb8ihOfEEILjITEBc6m43TAyLGDnVk0fD0OAY7bh36UuqqlrqI4oeSMN0KeM8KUUJSfMZJTU0vZNHvF4QyvhWL0z29P-UGxSumV5MgTFeyweNp4E4bR4YSl9RPGf-DKfvvxsSvHiD1G9AbLiA4mG3wq-xDLtB1HZzE36NDMeKYu6K40L5CHATw844B-Oi72e3AJV9_1qHi8_vtwdbu-u7_ZXF3erY2o5bRGaPu2lpWUHSjGoW4UUbRl0vRMcq563knRSWwkkVTVwojWUEIZx7YlRgI_KjaLbhfgVY_RDhB3OoDVX0CIzxriZI1DXVW8qppWAnaVqFo2X6pNzQVlpqsambVOF60xhrctpkkPNhl0DjyGbdK0JpQSwRXPq2JZNTGklD_2e5oSPfujf_zRsz968SfTLhaa9fmjA7yH6Do9wc6F2EfwxibN_6vwCXw6lyU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1701104393</pqid></control><display><type>article</type><title>Incomplete interval fuzzy preference relations for supplier selection in supply chain management</title><source>Business Source Complete</source><creator>Xu, Yejun ; Patnayakuni, Ravi ; Tao, Feifei ; Wang, Huimin</creator><creatorcontrib>Xu, Yejun ; Patnayakuni, Ravi ; Tao, Feifei ; Wang, Huimin</creatorcontrib><description>In the analytical hierarchy process (AHP), it needs the decision maker to establish a pairwise comparison matrix requires n(n-1)/2 judgments for a level with n criteria (or alternatives). In some instances, the decision maker may have to deal with the problems in which only partial information and uncertain preference relation is available. Consequently, the decision maker may provide interval fuzzy preference relation with incomplete information. In this paper, we focus our attention on the investigation of incomplete interval fuzzy preference relation. We first extend a characterization to the interval fuzzy preference relation which is based on the additive transitivity property. Using the characterization, we propose a method to construct interval additive consistent fuzzy preference relations from a set of n-1 preference data. The study reveals that the proposed method can not only alleviate the comparisons, but also ensure interval preference relations with the additive consistent property. We also develop a novel procedure to deal with the analytic hierarchy problem for group decision making with incomplete interval fuzzy preference relations. Finally, a numerical example is illustrated and a supplier selection case in supply chain management is investigated using the proposed method.</description><identifier>ISSN: 2029-4913</identifier><identifier>EISSN: 2029-4921</identifier><identifier>DOI: 10.3846/20294913.2013.876688</identifier><language>eng</language><publisher>Taylor & Francis</publisher><subject>additive consistent ; Additives ; Analytic hierarchy process ; Decision making ; Fuzzy ; Fuzzy logic ; Fuzzy set theory ; group decision making ; incomplete interval fuzzy preference relation ; Intervals ; Mathematical models ; supplier selection ; Supply chains</subject><ispartof>Technological and economic development of economy, 2015-05, Vol.21 (3), p.379-404</ispartof><rights>Copyright © 2015 Vilnius Gediminas Technical University (VGTU) Press 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-eabfb76566da923a789091b26cf26339f3d64d6e86061974c4bc10123ebb0c6a3</citedby><cites>FETCH-LOGICAL-c476t-eabfb76566da923a789091b26cf26339f3d64d6e86061974c4bc10123ebb0c6a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Xu, Yejun</creatorcontrib><creatorcontrib>Patnayakuni, Ravi</creatorcontrib><creatorcontrib>Tao, Feifei</creatorcontrib><creatorcontrib>Wang, Huimin</creatorcontrib><title>Incomplete interval fuzzy preference relations for supplier selection in supply chain management</title><title>Technological and economic development of economy</title><description>In the analytical hierarchy process (AHP), it needs the decision maker to establish a pairwise comparison matrix requires n(n-1)/2 judgments for a level with n criteria (or alternatives). In some instances, the decision maker may have to deal with the problems in which only partial information and uncertain preference relation is available. Consequently, the decision maker may provide interval fuzzy preference relation with incomplete information. In this paper, we focus our attention on the investigation of incomplete interval fuzzy preference relation. We first extend a characterization to the interval fuzzy preference relation which is based on the additive transitivity property. Using the characterization, we propose a method to construct interval additive consistent fuzzy preference relations from a set of n-1 preference data. The study reveals that the proposed method can not only alleviate the comparisons, but also ensure interval preference relations with the additive consistent property. We also develop a novel procedure to deal with the analytic hierarchy problem for group decision making with incomplete interval fuzzy preference relations. Finally, a numerical example is illustrated and a supplier selection case in supply chain management is investigated using the proposed method.</description><subject>additive consistent</subject><subject>Additives</subject><subject>Analytic hierarchy process</subject><subject>Decision making</subject><subject>Fuzzy</subject><subject>Fuzzy logic</subject><subject>Fuzzy set theory</subject><subject>group decision making</subject><subject>incomplete interval fuzzy preference relation</subject><subject>Intervals</subject><subject>Mathematical models</subject><subject>supplier selection</subject><subject>Supply chains</subject><issn>2029-4913</issn><issn>2029-4921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9UctO5DAQjNAigWD-gEOOXAb8ihOfEEILjITEBc6m43TAyLGDnVk0fD0OAY7bh36UuqqlrqI4oeSMN0KeM8KUUJSfMZJTU0vZNHvF4QyvhWL0z29P-UGxSumV5MgTFeyweNp4E4bR4YSl9RPGf-DKfvvxsSvHiD1G9AbLiA4mG3wq-xDLtB1HZzE36NDMeKYu6K40L5CHATw844B-Oi72e3AJV9_1qHi8_vtwdbu-u7_ZXF3erY2o5bRGaPu2lpWUHSjGoW4UUbRl0vRMcq563knRSWwkkVTVwojWUEIZx7YlRgI_KjaLbhfgVY_RDhB3OoDVX0CIzxriZI1DXVW8qppWAnaVqFo2X6pNzQVlpqsambVOF60xhrctpkkPNhl0DjyGbdK0JpQSwRXPq2JZNTGklD_2e5oSPfujf_zRsz968SfTLhaa9fmjA7yH6Do9wc6F2EfwxibN_6vwCXw6lyU</recordid><startdate>20150504</startdate><enddate>20150504</enddate><creator>Xu, Yejun</creator><creator>Patnayakuni, Ravi</creator><creator>Tao, Feifei</creator><creator>Wang, Huimin</creator><general>Taylor & Francis</general><general>Vilnius Gediminas Technical University</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TA</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope></search><sort><creationdate>20150504</creationdate><title>Incomplete interval fuzzy preference relations for supplier selection in supply chain management</title><author>Xu, Yejun ; Patnayakuni, Ravi ; Tao, Feifei ; Wang, Huimin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-eabfb76566da923a789091b26cf26339f3d64d6e86061974c4bc10123ebb0c6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>additive consistent</topic><topic>Additives</topic><topic>Analytic hierarchy process</topic><topic>Decision making</topic><topic>Fuzzy</topic><topic>Fuzzy logic</topic><topic>Fuzzy set theory</topic><topic>group decision making</topic><topic>incomplete interval fuzzy preference relation</topic><topic>Intervals</topic><topic>Mathematical models</topic><topic>supplier selection</topic><topic>Supply chains</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Yejun</creatorcontrib><creatorcontrib>Patnayakuni, Ravi</creatorcontrib><creatorcontrib>Tao, Feifei</creatorcontrib><creatorcontrib>Wang, Huimin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Materials Business File</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Technological and economic development of economy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Yejun</au><au>Patnayakuni, Ravi</au><au>Tao, Feifei</au><au>Wang, Huimin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incomplete interval fuzzy preference relations for supplier selection in supply chain management</atitle><jtitle>Technological and economic development of economy</jtitle><date>2015-05-04</date><risdate>2015</risdate><volume>21</volume><issue>3</issue><spage>379</spage><epage>404</epage><pages>379-404</pages><issn>2029-4913</issn><eissn>2029-4921</eissn><abstract>In the analytical hierarchy process (AHP), it needs the decision maker to establish a pairwise comparison matrix requires n(n-1)/2 judgments for a level with n criteria (or alternatives). In some instances, the decision maker may have to deal with the problems in which only partial information and uncertain preference relation is available. Consequently, the decision maker may provide interval fuzzy preference relation with incomplete information. In this paper, we focus our attention on the investigation of incomplete interval fuzzy preference relation. We first extend a characterization to the interval fuzzy preference relation which is based on the additive transitivity property. Using the characterization, we propose a method to construct interval additive consistent fuzzy preference relations from a set of n-1 preference data. The study reveals that the proposed method can not only alleviate the comparisons, but also ensure interval preference relations with the additive consistent property. We also develop a novel procedure to deal with the analytic hierarchy problem for group decision making with incomplete interval fuzzy preference relations. Finally, a numerical example is illustrated and a supplier selection case in supply chain management is investigated using the proposed method.</abstract><pub>Taylor & Francis</pub><doi>10.3846/20294913.2013.876688</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2029-4913 |
ispartof | Technological and economic development of economy, 2015-05, Vol.21 (3), p.379-404 |
issn | 2029-4913 2029-4921 |
language | eng |
recordid | cdi_proquest_miscellaneous_1701104393 |
source | Business Source Complete |
subjects | additive consistent Additives Analytic hierarchy process Decision making Fuzzy Fuzzy logic Fuzzy set theory group decision making incomplete interval fuzzy preference relation Intervals Mathematical models supplier selection Supply chains |
title | Incomplete interval fuzzy preference relations for supplier selection in supply chain management |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T05%3A38%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incomplete%20interval%20fuzzy%20preference%20relations%20for%20supplier%20selection%20in%20supply%20chain%20management&rft.jtitle=Technological%20and%20economic%20development%20of%20economy&rft.au=Xu,%20Yejun&rft.date=2015-05-04&rft.volume=21&rft.issue=3&rft.spage=379&rft.epage=404&rft.pages=379-404&rft.issn=2029-4913&rft.eissn=2029-4921&rft_id=info:doi/10.3846/20294913.2013.876688&rft_dat=%3Cproquest_infor%3E1701104393%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1701104393&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_553558b6aed545b290917c73412cd586&rfr_iscdi=true |