Learning and prediction of relational time series

Learning to predict events in the near future is fundamental to human and artificial agents. Many prediction techniques are unable to learn and predict a stream of relational data online when the environments are unknown, non-stationary, and no prior training examples are available. This paper addre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational and mathematical organization theory 2015-06, Vol.21 (2), p.210-241
Hauptverfasser: Tan, Terence K., Darken, Christian J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 241
container_issue 2
container_start_page 210
container_title Computational and mathematical organization theory
container_volume 21
creator Tan, Terence K.
Darken, Christian J.
description Learning to predict events in the near future is fundamental to human and artificial agents. Many prediction techniques are unable to learn and predict a stream of relational data online when the environments are unknown, non-stationary, and no prior training examples are available. This paper addresses the online prediction problem by introducing a low complexity learning technique called Situation Learning and several prediction techniques that use the information from Situation Learning to predict the next likely event. The prediction techniques include two variants of a Bayesian inference technique, a variable order Markov model prediction technique and situation matching techniques. We compared their prediction accuracies quantitatively for three domains: a role-playing game, computer network intrusion system alerts, and event prediction of maritime paths in a discrete-event simulator.
doi_str_mv 10.1007/s10588-015-9182-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701093736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3664972571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-afe21ed75f1767e5ccddf6443d1d2300dedf2c4330cef984233112be258551b53</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-AG8FL16iM0nTpEdZ_IIFLwreQjaZLF267Zp0D_57W9aDCOJp5vC8LzMPY5cINwigbzOCMoYDKl6jERyO2AyVFryWZXU87tIgF7V5P2VnOW8AoNYSZgyX5FLXdOvCdaHYJQqNH5q-K_pYJGrdtLu2GJotFZlSQ_mcnUTXZrr4nnP29nD_unjiy5fH58XdkvvSyIG7SAIpaBVRV5qU9yHEqixlwCAkQKAQhS-lBE-xNqWQElGsSCijFK6UnLPrQ-8u9R97yoPdNtlT27qO-n22qAGhllpW_6OVqcrxDKFH9OoXuun3aXxxorRSNUo9FeKB8qnPOVG0u9RsXfq0CHbybQ--7ejbTr4tjBlxyOSR7daUfjT_GfoCezuApQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1675591376</pqid></control><display><type>article</type><title>Learning and prediction of relational time series</title><source>Springer Nature - Complete Springer Journals</source><creator>Tan, Terence K. ; Darken, Christian J.</creator><creatorcontrib>Tan, Terence K. ; Darken, Christian J.</creatorcontrib><description>Learning to predict events in the near future is fundamental to human and artificial agents. Many prediction techniques are unable to learn and predict a stream of relational data online when the environments are unknown, non-stationary, and no prior training examples are available. This paper addresses the online prediction problem by introducing a low complexity learning technique called Situation Learning and several prediction techniques that use the information from Situation Learning to predict the next likely event. The prediction techniques include two variants of a Bayesian inference technique, a variable order Markov model prediction technique and situation matching techniques. We compared their prediction accuracies quantitatively for three domains: a role-playing game, computer network intrusion system alerts, and event prediction of maritime paths in a discrete-event simulator.</description><identifier>ISSN: 1381-298X</identifier><identifier>EISSN: 1572-9346</identifier><identifier>DOI: 10.1007/s10588-015-9182-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Artificial Intelligence ; Bayesian method ; Behavior ; Business and Management ; Computer networks ; Computer simulation ; Cybersecurity ; Data encryption ; Distance learning ; Forecasts ; Inference ; Information ; Learning ; Management ; Maritime ; Markov models ; Markovian processes ; Matching ; Mathematical models ; Methodology of the Social Sciences ; Online ; Operations Research/Decision Theory ; Organization theory ; Sociology ; Studies ; Time series</subject><ispartof>Computational and mathematical organization theory, 2015-06, Vol.21 (2), p.210-241</ispartof><rights>Springer Science+Business Media New York 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-afe21ed75f1767e5ccddf6443d1d2300dedf2c4330cef984233112be258551b53</citedby><cites>FETCH-LOGICAL-c483t-afe21ed75f1767e5ccddf6443d1d2300dedf2c4330cef984233112be258551b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10588-015-9182-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10588-015-9182-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Tan, Terence K.</creatorcontrib><creatorcontrib>Darken, Christian J.</creatorcontrib><title>Learning and prediction of relational time series</title><title>Computational and mathematical organization theory</title><addtitle>Comput Math Organ Theory</addtitle><description>Learning to predict events in the near future is fundamental to human and artificial agents. Many prediction techniques are unable to learn and predict a stream of relational data online when the environments are unknown, non-stationary, and no prior training examples are available. This paper addresses the online prediction problem by introducing a low complexity learning technique called Situation Learning and several prediction techniques that use the information from Situation Learning to predict the next likely event. The prediction techniques include two variants of a Bayesian inference technique, a variable order Markov model prediction technique and situation matching techniques. We compared their prediction accuracies quantitatively for three domains: a role-playing game, computer network intrusion system alerts, and event prediction of maritime paths in a discrete-event simulator.</description><subject>Analysis</subject><subject>Artificial Intelligence</subject><subject>Bayesian method</subject><subject>Behavior</subject><subject>Business and Management</subject><subject>Computer networks</subject><subject>Computer simulation</subject><subject>Cybersecurity</subject><subject>Data encryption</subject><subject>Distance learning</subject><subject>Forecasts</subject><subject>Inference</subject><subject>Information</subject><subject>Learning</subject><subject>Management</subject><subject>Maritime</subject><subject>Markov models</subject><subject>Markovian processes</subject><subject>Matching</subject><subject>Mathematical models</subject><subject>Methodology of the Social Sciences</subject><subject>Online</subject><subject>Operations Research/Decision Theory</subject><subject>Organization theory</subject><subject>Sociology</subject><subject>Studies</subject><subject>Time series</subject><issn>1381-298X</issn><issn>1572-9346</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkE1LxDAQhoMouK7-AG8FL16iM0nTpEdZ_IIFLwreQjaZLF267Zp0D_57W9aDCOJp5vC8LzMPY5cINwigbzOCMoYDKl6jERyO2AyVFryWZXU87tIgF7V5P2VnOW8AoNYSZgyX5FLXdOvCdaHYJQqNH5q-K_pYJGrdtLu2GJotFZlSQ_mcnUTXZrr4nnP29nD_unjiy5fH58XdkvvSyIG7SAIpaBVRV5qU9yHEqixlwCAkQKAQhS-lBE-xNqWQElGsSCijFK6UnLPrQ-8u9R97yoPdNtlT27qO-n22qAGhllpW_6OVqcrxDKFH9OoXuun3aXxxorRSNUo9FeKB8qnPOVG0u9RsXfq0CHbybQ--7ejbTr4tjBlxyOSR7daUfjT_GfoCezuApQ</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Tan, Terence K.</creator><creator>Darken, Christian J.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>JG9</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20150601</creationdate><title>Learning and prediction of relational time series</title><author>Tan, Terence K. ; Darken, Christian J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-afe21ed75f1767e5ccddf6443d1d2300dedf2c4330cef984233112be258551b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Analysis</topic><topic>Artificial Intelligence</topic><topic>Bayesian method</topic><topic>Behavior</topic><topic>Business and Management</topic><topic>Computer networks</topic><topic>Computer simulation</topic><topic>Cybersecurity</topic><topic>Data encryption</topic><topic>Distance learning</topic><topic>Forecasts</topic><topic>Inference</topic><topic>Information</topic><topic>Learning</topic><topic>Management</topic><topic>Maritime</topic><topic>Markov models</topic><topic>Markovian processes</topic><topic>Matching</topic><topic>Mathematical models</topic><topic>Methodology of the Social Sciences</topic><topic>Online</topic><topic>Operations Research/Decision Theory</topic><topic>Organization theory</topic><topic>Sociology</topic><topic>Studies</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Terence K.</creatorcontrib><creatorcontrib>Darken, Christian J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Materials Business File</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Computational and mathematical organization theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Terence K.</au><au>Darken, Christian J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning and prediction of relational time series</atitle><jtitle>Computational and mathematical organization theory</jtitle><stitle>Comput Math Organ Theory</stitle><date>2015-06-01</date><risdate>2015</risdate><volume>21</volume><issue>2</issue><spage>210</spage><epage>241</epage><pages>210-241</pages><issn>1381-298X</issn><eissn>1572-9346</eissn><abstract>Learning to predict events in the near future is fundamental to human and artificial agents. Many prediction techniques are unable to learn and predict a stream of relational data online when the environments are unknown, non-stationary, and no prior training examples are available. This paper addresses the online prediction problem by introducing a low complexity learning technique called Situation Learning and several prediction techniques that use the information from Situation Learning to predict the next likely event. The prediction techniques include two variants of a Bayesian inference technique, a variable order Markov model prediction technique and situation matching techniques. We compared their prediction accuracies quantitatively for three domains: a role-playing game, computer network intrusion system alerts, and event prediction of maritime paths in a discrete-event simulator.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10588-015-9182-0</doi><tpages>32</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1381-298X
ispartof Computational and mathematical organization theory, 2015-06, Vol.21 (2), p.210-241
issn 1381-298X
1572-9346
language eng
recordid cdi_proquest_miscellaneous_1701093736
source Springer Nature - Complete Springer Journals
subjects Analysis
Artificial Intelligence
Bayesian method
Behavior
Business and Management
Computer networks
Computer simulation
Cybersecurity
Data encryption
Distance learning
Forecasts
Inference
Information
Learning
Management
Maritime
Markov models
Markovian processes
Matching
Mathematical models
Methodology of the Social Sciences
Online
Operations Research/Decision Theory
Organization theory
Sociology
Studies
Time series
title Learning and prediction of relational time series
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A02%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20and%20prediction%20of%20relational%20time%20series&rft.jtitle=Computational%20and%20mathematical%20organization%20theory&rft.au=Tan,%20Terence%20K.&rft.date=2015-06-01&rft.volume=21&rft.issue=2&rft.spage=210&rft.epage=241&rft.pages=210-241&rft.issn=1381-298X&rft.eissn=1572-9346&rft_id=info:doi/10.1007/s10588-015-9182-0&rft_dat=%3Cproquest_cross%3E3664972571%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1675591376&rft_id=info:pmid/&rfr_iscdi=true