Plant Seed Image Recognition System (PSIRS)
The objective of this research is to develop a computer system, which can recognize a plant seed image. The system is called "Plant seed image recognition system (PSIRS)". The system consists of 5 processing modules, namely: 1) image acquisition, 2) image preprocessing, 3) feature extracti...
Gespeichert in:
Veröffentlicht in: | International Journal of Engineering and Technology 2011-12, Vol.3 (6), p.600-605 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 605 |
---|---|
container_issue | 6 |
container_start_page | 600 |
container_title | International Journal of Engineering and Technology |
container_volume | 3 |
creator | Lurstwut, Benjamaporn Pornpanomchai, Chomtip |
description | The objective of this research is to develop a computer system, which can recognize a plant seed image. The system is called "Plant seed image recognition system (PSIRS)". The system consists of 5 processing modules, namely: 1) image acquisition, 2) image preprocessing, 3) feature extraction, 4) image recognition, and 5) display result. The experiment was conducted on more than 1,000 seed images by employing the Euclidean distance technique to recognize them. The precision rates of the system were 95.1 percent for correct matching in the training data set and 64.0 percent for unknown in the untrained data set. The average access time was 8.79 seconds per image. |
doi_str_mv | 10.7763/IJET.2011.V3.292 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701093704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1701093704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1544-d998c5e7c6770618deed6872604cd009bde2d1844e8f2adb03686b55408628da3</originalsourceid><addsrcrecordid>eNqFkE1PwkAURSdGEwmyd9klxrS-N9-zNAS1hkRCke2kzAykhlLslAX_3hKMW1f3Lk5ubg4h9wiZUpI95e_TZUYBMVuxjBp6RQaoDEs15fz6rzN5S0YxfgEAMo5a4IA8znflvkuKEHyS1-U2JIvgmu2-6qpmnxSn2IU6Gc-LfFE83JGbTbmLYfSbQ_L5Ml1O3tLZx2s-eZ6lDgXnqTdGOxGUk0qBRO37bakVlcCdBzBrH6hHzXnQG1r6NTCp5VoIDlpS7Us2JOPL7qFtvo8hdrauogu7_mlojtGiAgTDFPD_UUHBUKVB9ChcUNc2MbZhYw9tVZftySLYs0V7tmjPFu2K2d4i-wHimGFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1520927805</pqid></control><display><type>article</type><title>Plant Seed Image Recognition System (PSIRS)</title><source>EZB Electronic Journals Library</source><creator>Lurstwut, Benjamaporn ; Pornpanomchai, Chomtip</creator><creatorcontrib>Lurstwut, Benjamaporn ; Pornpanomchai, Chomtip</creatorcontrib><description>The objective of this research is to develop a computer system, which can recognize a plant seed image. The system is called "Plant seed image recognition system (PSIRS)". The system consists of 5 processing modules, namely: 1) image acquisition, 2) image preprocessing, 3) feature extraction, 4) image recognition, and 5) display result. The experiment was conducted on more than 1,000 seed images by employing the Euclidean distance technique to recognize them. The precision rates of the system were 95.1 percent for correct matching in the training data set and 64.0 percent for unknown in the untrained data set. The average access time was 8.79 seconds per image.</description><identifier>ISSN: 1793-8236</identifier><identifier>EISSN: 1793-8244</identifier><identifier>DOI: 10.7763/IJET.2011.V3.292</identifier><language>eng</language><subject>Access time ; Feature extraction ; Image acquisition ; Object recognition ; Preprocessing ; Recognition ; Seeds</subject><ispartof>International Journal of Engineering and Technology, 2011-12, Vol.3 (6), p.600-605</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1544-d998c5e7c6770618deed6872604cd009bde2d1844e8f2adb03686b55408628da3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lurstwut, Benjamaporn</creatorcontrib><creatorcontrib>Pornpanomchai, Chomtip</creatorcontrib><title>Plant Seed Image Recognition System (PSIRS)</title><title>International Journal of Engineering and Technology</title><description>The objective of this research is to develop a computer system, which can recognize a plant seed image. The system is called "Plant seed image recognition system (PSIRS)". The system consists of 5 processing modules, namely: 1) image acquisition, 2) image preprocessing, 3) feature extraction, 4) image recognition, and 5) display result. The experiment was conducted on more than 1,000 seed images by employing the Euclidean distance technique to recognize them. The precision rates of the system were 95.1 percent for correct matching in the training data set and 64.0 percent for unknown in the untrained data set. The average access time was 8.79 seconds per image.</description><subject>Access time</subject><subject>Feature extraction</subject><subject>Image acquisition</subject><subject>Object recognition</subject><subject>Preprocessing</subject><subject>Recognition</subject><subject>Seeds</subject><issn>1793-8236</issn><issn>1793-8244</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PwkAURSdGEwmyd9klxrS-N9-zNAS1hkRCke2kzAykhlLslAX_3hKMW1f3Lk5ubg4h9wiZUpI95e_TZUYBMVuxjBp6RQaoDEs15fz6rzN5S0YxfgEAMo5a4IA8znflvkuKEHyS1-U2JIvgmu2-6qpmnxSn2IU6Gc-LfFE83JGbTbmLYfSbQ_L5Ml1O3tLZx2s-eZ6lDgXnqTdGOxGUk0qBRO37bakVlcCdBzBrH6hHzXnQG1r6NTCp5VoIDlpS7Us2JOPL7qFtvo8hdrauogu7_mlojtGiAgTDFPD_UUHBUKVB9ChcUNc2MbZhYw9tVZftySLYs0V7tmjPFu2K2d4i-wHimGFw</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Lurstwut, Benjamaporn</creator><creator>Pornpanomchai, Chomtip</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20111201</creationdate><title>Plant Seed Image Recognition System (PSIRS)</title><author>Lurstwut, Benjamaporn ; Pornpanomchai, Chomtip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1544-d998c5e7c6770618deed6872604cd009bde2d1844e8f2adb03686b55408628da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Access time</topic><topic>Feature extraction</topic><topic>Image acquisition</topic><topic>Object recognition</topic><topic>Preprocessing</topic><topic>Recognition</topic><topic>Seeds</topic><toplevel>online_resources</toplevel><creatorcontrib>Lurstwut, Benjamaporn</creatorcontrib><creatorcontrib>Pornpanomchai, Chomtip</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International Journal of Engineering and Technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lurstwut, Benjamaporn</au><au>Pornpanomchai, Chomtip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plant Seed Image Recognition System (PSIRS)</atitle><jtitle>International Journal of Engineering and Technology</jtitle><date>2011-12-01</date><risdate>2011</risdate><volume>3</volume><issue>6</issue><spage>600</spage><epage>605</epage><pages>600-605</pages><issn>1793-8236</issn><eissn>1793-8244</eissn><abstract>The objective of this research is to develop a computer system, which can recognize a plant seed image. The system is called "Plant seed image recognition system (PSIRS)". The system consists of 5 processing modules, namely: 1) image acquisition, 2) image preprocessing, 3) feature extraction, 4) image recognition, and 5) display result. The experiment was conducted on more than 1,000 seed images by employing the Euclidean distance technique to recognize them. The precision rates of the system were 95.1 percent for correct matching in the training data set and 64.0 percent for unknown in the untrained data set. The average access time was 8.79 seconds per image.</abstract><doi>10.7763/IJET.2011.V3.292</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1793-8236 |
ispartof | International Journal of Engineering and Technology, 2011-12, Vol.3 (6), p.600-605 |
issn | 1793-8236 1793-8244 |
language | eng |
recordid | cdi_proquest_miscellaneous_1701093704 |
source | EZB Electronic Journals Library |
subjects | Access time Feature extraction Image acquisition Object recognition Preprocessing Recognition Seeds |
title | Plant Seed Image Recognition System (PSIRS) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A35%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plant%20Seed%20Image%20Recognition%20System%20(PSIRS)&rft.jtitle=International%20Journal%20of%20Engineering%20and%20Technology&rft.au=Lurstwut,%20Benjamaporn&rft.date=2011-12-01&rft.volume=3&rft.issue=6&rft.spage=600&rft.epage=605&rft.pages=600-605&rft.issn=1793-8236&rft.eissn=1793-8244&rft_id=info:doi/10.7763/IJET.2011.V3.292&rft_dat=%3Cproquest_cross%3E1701093704%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1520927805&rft_id=info:pmid/&rfr_iscdi=true |