Intrusion Detection System Using New Ensemble Boosting Approach
Security is a big issue for all networks in today's enterprise environment. Hackers and intruders have made many successful attempts to bring down high profile company networks and web services. Intrusion Detection System (IDS) is an important detection that is used as a countermeasure to prese...
Gespeichert in:
Veröffentlicht in: | International journal of modeling and optimization 2012-08, Vol.2 (4), p.488-492 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 492 |
---|---|
container_issue | 4 |
container_start_page | 488 |
container_title | International journal of modeling and optimization |
container_volume | 2 |
creator | Dongre, Snehlata S Wankhade, Kapil K |
description | Security is a big issue for all networks in today's enterprise environment. Hackers and intruders have made many successful attempts to bring down high profile company networks and web services. Intrusion Detection System (IDS) is an important detection that is used as a countermeasure to preserve data integrity and system availability from attacks. The main reason for using data mining classification methods for Intrusion Detection System is due to the enormous volume of existing and newly appearing network data that require processing. Data mining is the best option for dandling such type of data. This paper presents the new idea of applying data mining classification techniques to intrusion detection systems to maximize the effectiveness in identifying attacks, thereby helping the users to construct more secure information systems. This paper uses ensemble boosting approach with adaptive sliding window for intrusion detection. The ensemble method is advantageous over single classifier. |
doi_str_mv | 10.7763/IJMO.2012.V2.168 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701093463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1520936022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1073-fcc500087bd4c39ffc751b3d95aac0160ce08ebf99465400d6cf1b6d30d1cfd13</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EElXpzpiRJeHOTux4QqUUKCp0gHa1EseGoHyUOBHqv8dRGdiY7r3TozvdQ8glQiQEZ9erp-dNRAFptKMR8vSETHwHIeNSnP7J52Tm3CcAIItRMpyQm1XTd4Mr2ya4M73R_ZheD643dbB1ZfMevJjvYNk4U-eVCW7b1vXjdL7fd22mPy7Imc0qZ2a_dUq298u3xWO43jysFvN1qBEEC63WiT-biryINZPWapFgzgqZZJkG5KANpCa3UsY8iQEKri3mvGBQoLYFsim5Ou71Z78G43pVl06bqsoa0w5OofA_ShZz9j-aUE9yoNSjcER11zrXGav2XVln3UEhqNGsGs2q0azaUeXNsh9Rz2sT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1520936022</pqid></control><display><type>article</type><title>Intrusion Detection System Using New Ensemble Boosting Approach</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Dongre, Snehlata S ; Wankhade, Kapil K</creator><creatorcontrib>Dongre, Snehlata S ; Wankhade, Kapil K</creatorcontrib><description>Security is a big issue for all networks in today's enterprise environment. Hackers and intruders have made many successful attempts to bring down high profile company networks and web services. Intrusion Detection System (IDS) is an important detection that is used as a countermeasure to preserve data integrity and system availability from attacks. The main reason for using data mining classification methods for Intrusion Detection System is due to the enormous volume of existing and newly appearing network data that require processing. Data mining is the best option for dandling such type of data. This paper presents the new idea of applying data mining classification techniques to intrusion detection systems to maximize the effectiveness in identifying attacks, thereby helping the users to construct more secure information systems. This paper uses ensemble boosting approach with adaptive sliding window for intrusion detection. The ensemble method is advantageous over single classifier.</description><identifier>ISSN: 2010-3697</identifier><identifier>EISSN: 2010-3697</identifier><identifier>DOI: 10.7763/IJMO.2012.V2.168</identifier><language>eng</language><subject>Availability ; Classification ; Computer information security ; Data mining ; Information systems ; Intrusion ; Networks ; Preserves</subject><ispartof>International journal of modeling and optimization, 2012-08, Vol.2 (4), p.488-492</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Dongre, Snehlata S</creatorcontrib><creatorcontrib>Wankhade, Kapil K</creatorcontrib><title>Intrusion Detection System Using New Ensemble Boosting Approach</title><title>International journal of modeling and optimization</title><description>Security is a big issue for all networks in today's enterprise environment. Hackers and intruders have made many successful attempts to bring down high profile company networks and web services. Intrusion Detection System (IDS) is an important detection that is used as a countermeasure to preserve data integrity and system availability from attacks. The main reason for using data mining classification methods for Intrusion Detection System is due to the enormous volume of existing and newly appearing network data that require processing. Data mining is the best option for dandling such type of data. This paper presents the new idea of applying data mining classification techniques to intrusion detection systems to maximize the effectiveness in identifying attacks, thereby helping the users to construct more secure information systems. This paper uses ensemble boosting approach with adaptive sliding window for intrusion detection. The ensemble method is advantageous over single classifier.</description><subject>Availability</subject><subject>Classification</subject><subject>Computer information security</subject><subject>Data mining</subject><subject>Information systems</subject><subject>Intrusion</subject><subject>Networks</subject><subject>Preserves</subject><issn>2010-3697</issn><issn>2010-3697</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EElXpzpiRJeHOTux4QqUUKCp0gHa1EseGoHyUOBHqv8dRGdiY7r3TozvdQ8glQiQEZ9erp-dNRAFptKMR8vSETHwHIeNSnP7J52Tm3CcAIItRMpyQm1XTd4Mr2ya4M73R_ZheD643dbB1ZfMevJjvYNk4U-eVCW7b1vXjdL7fd22mPy7Imc0qZ2a_dUq298u3xWO43jysFvN1qBEEC63WiT-biryINZPWapFgzgqZZJkG5KANpCa3UsY8iQEKri3mvGBQoLYFsim5Ou71Z78G43pVl06bqsoa0w5OofA_ShZz9j-aUE9yoNSjcER11zrXGav2XVln3UEhqNGsGs2q0azaUeXNsh9Rz2sT</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Dongre, Snehlata S</creator><creator>Wankhade, Kapil K</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120801</creationdate><title>Intrusion Detection System Using New Ensemble Boosting Approach</title><author>Dongre, Snehlata S ; Wankhade, Kapil K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1073-fcc500087bd4c39ffc751b3d95aac0160ce08ebf99465400d6cf1b6d30d1cfd13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Availability</topic><topic>Classification</topic><topic>Computer information security</topic><topic>Data mining</topic><topic>Information systems</topic><topic>Intrusion</topic><topic>Networks</topic><topic>Preserves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dongre, Snehlata S</creatorcontrib><creatorcontrib>Wankhade, Kapil K</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of modeling and optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dongre, Snehlata S</au><au>Wankhade, Kapil K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intrusion Detection System Using New Ensemble Boosting Approach</atitle><jtitle>International journal of modeling and optimization</jtitle><date>2012-08-01</date><risdate>2012</risdate><volume>2</volume><issue>4</issue><spage>488</spage><epage>492</epage><pages>488-492</pages><issn>2010-3697</issn><eissn>2010-3697</eissn><abstract>Security is a big issue for all networks in today's enterprise environment. Hackers and intruders have made many successful attempts to bring down high profile company networks and web services. Intrusion Detection System (IDS) is an important detection that is used as a countermeasure to preserve data integrity and system availability from attacks. The main reason for using data mining classification methods for Intrusion Detection System is due to the enormous volume of existing and newly appearing network data that require processing. Data mining is the best option for dandling such type of data. This paper presents the new idea of applying data mining classification techniques to intrusion detection systems to maximize the effectiveness in identifying attacks, thereby helping the users to construct more secure information systems. This paper uses ensemble boosting approach with adaptive sliding window for intrusion detection. The ensemble method is advantageous over single classifier.</abstract><doi>10.7763/IJMO.2012.V2.168</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2010-3697 |
ispartof | International journal of modeling and optimization, 2012-08, Vol.2 (4), p.488-492 |
issn | 2010-3697 2010-3697 |
language | eng |
recordid | cdi_proquest_miscellaneous_1701093463 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Availability Classification Computer information security Data mining Information systems Intrusion Networks Preserves |
title | Intrusion Detection System Using New Ensemble Boosting Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A46%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intrusion%20Detection%20System%20Using%20New%20Ensemble%20Boosting%20Approach&rft.jtitle=International%20journal%20of%20modeling%20and%20optimization&rft.au=Dongre,%20Snehlata%20S&rft.date=2012-08-01&rft.volume=2&rft.issue=4&rft.spage=488&rft.epage=492&rft.pages=488-492&rft.issn=2010-3697&rft.eissn=2010-3697&rft_id=info:doi/10.7763/IJMO.2012.V2.168&rft_dat=%3Cproquest_cross%3E1520936022%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1520936022&rft_id=info:pmid/&rfr_iscdi=true |