Matrix product states and variational methods applied to critical quantum field theory
We study the second-order quantum phase transition of massive real scalar field theory with a quartic interaction in (1 + 1) dimensions on an infinite spatial lattice using matrix product states. We introduce and apply a naive variational conjugate gradient method, based on the time-dependent variat...
Gespeichert in:
Veröffentlicht in: | Physical review. D, Particles, fields, gravitation, and cosmology Particles, fields, gravitation, and cosmology, 2013-10, Vol.88 (8), Article 085030 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | |
container_title | Physical review. D, Particles, fields, gravitation, and cosmology |
container_volume | 88 |
creator | Milsted, Ashley Haegeman, Jutho Osborne, Tobias J. |
description | We study the second-order quantum phase transition of massive real scalar field theory with a quartic interaction in (1 + 1) dimensions on an infinite spatial lattice using matrix product states. We introduce and apply a naive variational conjugate gradient method, based on the time-dependent variational principle for imaginary time, to obtain approximate ground states, using a related ansatz for excitations to calculate the particle and soliton masses and to obtain the spectral density. We also estimate the central charge using finite-entanglement scaling. Our value for the critical parameter agrees well with recent Monte Carlo results, improving on an earlier study which used the related density matrix normalization group method, verifying that these techniques are well-suited to studying critical field systems. We also obtain critical exponents that agree, as expected, with those of the transverse Ising model. Additionally, we treat the special case of uniform product states (mean field theory) separately, showing that they may be used to investigate noncritical quantum field theories under certain conditions. |
doi_str_mv | 10.1103/PhysRevD.88.085030 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701093188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1701093188</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-d3500630590161d75c1b2e82d63d0f1bb58cb08b37fdc6a70c7b2671d99b43573</originalsourceid><addsrcrecordid>eNo1kEtLAzEUhYMoWKt_wFWWbqbeTMwkWUp9QkURdRvyGhqZV5NMsf_ekdbVuZxzuBw-hC4JLAgBev223qV3v71bCLEAwYDCEZoRxqAoaSWODzeXUpyis5S-AWhZcT5DXy86x_CDh9i70Wacss4-Yd05vNUx6Bz6Tje49Xndu8kfhiZ4h3OPbQw52CnbjLrLY4vr4JspWfs-7s7RSa2b5C8OOkefD_cfy6di9fr4vLxdFZZKyIWjDKCiwCSQijjOLDGlF6WrqIOaGMOENSAM5bWzleZguZl2EyeluaGM0zm62v-d9m9Gn7JqQ7K-aXTn-zEpwoGApESIqVruqzb2KUVfqyGGVsedIqD-IKp_iEoItYdIfwHGkWfH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1701093188</pqid></control><display><type>article</type><title>Matrix product states and variational methods applied to critical quantum field theory</title><source>American Physical Society Journals</source><creator>Milsted, Ashley ; Haegeman, Jutho ; Osborne, Tobias J.</creator><creatorcontrib>Milsted, Ashley ; Haegeman, Jutho ; Osborne, Tobias J.</creatorcontrib><description>We study the second-order quantum phase transition of massive real scalar field theory with a quartic interaction in (1 + 1) dimensions on an infinite spatial lattice using matrix product states. We introduce and apply a naive variational conjugate gradient method, based on the time-dependent variational principle for imaginary time, to obtain approximate ground states, using a related ansatz for excitations to calculate the particle and soliton masses and to obtain the spectral density. We also estimate the central charge using finite-entanglement scaling. Our value for the critical parameter agrees well with recent Monte Carlo results, improving on an earlier study which used the related density matrix normalization group method, verifying that these techniques are well-suited to studying critical field systems. We also obtain critical exponents that agree, as expected, with those of the transverse Ising model. Additionally, we treat the special case of uniform product states (mean field theory) separately, showing that they may be used to investigate noncritical quantum field theories under certain conditions.</description><identifier>ISSN: 1550-7998</identifier><identifier>EISSN: 1550-2368</identifier><identifier>DOI: 10.1103/PhysRevD.88.085030</identifier><language>eng</language><subject>Charge ; Density ; Field theory ; Ground state ; Mathematical models ; Monte Carlo methods ; Quantum theory ; Variational methods</subject><ispartof>Physical review. D, Particles, fields, gravitation, and cosmology, 2013-10, Vol.88 (8), Article 085030</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-d3500630590161d75c1b2e82d63d0f1bb58cb08b37fdc6a70c7b2671d99b43573</citedby><cites>FETCH-LOGICAL-c390t-d3500630590161d75c1b2e82d63d0f1bb58cb08b37fdc6a70c7b2671d99b43573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Milsted, Ashley</creatorcontrib><creatorcontrib>Haegeman, Jutho</creatorcontrib><creatorcontrib>Osborne, Tobias J.</creatorcontrib><title>Matrix product states and variational methods applied to critical quantum field theory</title><title>Physical review. D, Particles, fields, gravitation, and cosmology</title><description>We study the second-order quantum phase transition of massive real scalar field theory with a quartic interaction in (1 + 1) dimensions on an infinite spatial lattice using matrix product states. We introduce and apply a naive variational conjugate gradient method, based on the time-dependent variational principle for imaginary time, to obtain approximate ground states, using a related ansatz for excitations to calculate the particle and soliton masses and to obtain the spectral density. We also estimate the central charge using finite-entanglement scaling. Our value for the critical parameter agrees well with recent Monte Carlo results, improving on an earlier study which used the related density matrix normalization group method, verifying that these techniques are well-suited to studying critical field systems. We also obtain critical exponents that agree, as expected, with those of the transverse Ising model. Additionally, we treat the special case of uniform product states (mean field theory) separately, showing that they may be used to investigate noncritical quantum field theories under certain conditions.</description><subject>Charge</subject><subject>Density</subject><subject>Field theory</subject><subject>Ground state</subject><subject>Mathematical models</subject><subject>Monte Carlo methods</subject><subject>Quantum theory</subject><subject>Variational methods</subject><issn>1550-7998</issn><issn>1550-2368</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo1kEtLAzEUhYMoWKt_wFWWbqbeTMwkWUp9QkURdRvyGhqZV5NMsf_ekdbVuZxzuBw-hC4JLAgBev223qV3v71bCLEAwYDCEZoRxqAoaSWODzeXUpyis5S-AWhZcT5DXy86x_CDh9i70Wacss4-Yd05vNUx6Bz6Tje49Xndu8kfhiZ4h3OPbQw52CnbjLrLY4vr4JspWfs-7s7RSa2b5C8OOkefD_cfy6di9fr4vLxdFZZKyIWjDKCiwCSQijjOLDGlF6WrqIOaGMOENSAM5bWzleZguZl2EyeluaGM0zm62v-d9m9Gn7JqQ7K-aXTn-zEpwoGApESIqVruqzb2KUVfqyGGVsedIqD-IKp_iEoItYdIfwHGkWfH</recordid><startdate>20131024</startdate><enddate>20131024</enddate><creator>Milsted, Ashley</creator><creator>Haegeman, Jutho</creator><creator>Osborne, Tobias J.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20131024</creationdate><title>Matrix product states and variational methods applied to critical quantum field theory</title><author>Milsted, Ashley ; Haegeman, Jutho ; Osborne, Tobias J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-d3500630590161d75c1b2e82d63d0f1bb58cb08b37fdc6a70c7b2671d99b43573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Charge</topic><topic>Density</topic><topic>Field theory</topic><topic>Ground state</topic><topic>Mathematical models</topic><topic>Monte Carlo methods</topic><topic>Quantum theory</topic><topic>Variational methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Milsted, Ashley</creatorcontrib><creatorcontrib>Haegeman, Jutho</creatorcontrib><creatorcontrib>Osborne, Tobias J.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D, Particles, fields, gravitation, and cosmology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Milsted, Ashley</au><au>Haegeman, Jutho</au><au>Osborne, Tobias J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Matrix product states and variational methods applied to critical quantum field theory</atitle><jtitle>Physical review. D, Particles, fields, gravitation, and cosmology</jtitle><date>2013-10-24</date><risdate>2013</risdate><volume>88</volume><issue>8</issue><artnum>085030</artnum><issn>1550-7998</issn><eissn>1550-2368</eissn><abstract>We study the second-order quantum phase transition of massive real scalar field theory with a quartic interaction in (1 + 1) dimensions on an infinite spatial lattice using matrix product states. We introduce and apply a naive variational conjugate gradient method, based on the time-dependent variational principle for imaginary time, to obtain approximate ground states, using a related ansatz for excitations to calculate the particle and soliton masses and to obtain the spectral density. We also estimate the central charge using finite-entanglement scaling. Our value for the critical parameter agrees well with recent Monte Carlo results, improving on an earlier study which used the related density matrix normalization group method, verifying that these techniques are well-suited to studying critical field systems. We also obtain critical exponents that agree, as expected, with those of the transverse Ising model. Additionally, we treat the special case of uniform product states (mean field theory) separately, showing that they may be used to investigate noncritical quantum field theories under certain conditions.</abstract><doi>10.1103/PhysRevD.88.085030</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1550-7998 |
ispartof | Physical review. D, Particles, fields, gravitation, and cosmology, 2013-10, Vol.88 (8), Article 085030 |
issn | 1550-7998 1550-2368 |
language | eng |
recordid | cdi_proquest_miscellaneous_1701093188 |
source | American Physical Society Journals |
subjects | Charge Density Field theory Ground state Mathematical models Monte Carlo methods Quantum theory Variational methods |
title | Matrix product states and variational methods applied to critical quantum field theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A40%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Matrix%20product%20states%20and%20variational%20methods%20applied%20to%20critical%20quantum%20field%20theory&rft.jtitle=Physical%20review.%20D,%20Particles,%20fields,%20gravitation,%20and%20cosmology&rft.au=Milsted,%20Ashley&rft.date=2013-10-24&rft.volume=88&rft.issue=8&rft.artnum=085030&rft.issn=1550-7998&rft.eissn=1550-2368&rft_id=info:doi/10.1103/PhysRevD.88.085030&rft_dat=%3Cproquest_cross%3E1701093188%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1701093188&rft_id=info:pmid/&rfr_iscdi=true |