Matrix product states and variational methods applied to critical quantum field theory

We study the second-order quantum phase transition of massive real scalar field theory with a quartic interaction in (1 + 1) dimensions on an infinite spatial lattice using matrix product states. We introduce and apply a naive variational conjugate gradient method, based on the time-dependent variat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D, Particles, fields, gravitation, and cosmology Particles, fields, gravitation, and cosmology, 2013-10, Vol.88 (8), Article 085030
Hauptverfasser: Milsted, Ashley, Haegeman, Jutho, Osborne, Tobias J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title Physical review. D, Particles, fields, gravitation, and cosmology
container_volume 88
creator Milsted, Ashley
Haegeman, Jutho
Osborne, Tobias J.
description We study the second-order quantum phase transition of massive real scalar field theory with a quartic interaction in (1 + 1) dimensions on an infinite spatial lattice using matrix product states. We introduce and apply a naive variational conjugate gradient method, based on the time-dependent variational principle for imaginary time, to obtain approximate ground states, using a related ansatz for excitations to calculate the particle and soliton masses and to obtain the spectral density. We also estimate the central charge using finite-entanglement scaling. Our value for the critical parameter agrees well with recent Monte Carlo results, improving on an earlier study which used the related density matrix normalization group method, verifying that these techniques are well-suited to studying critical field systems. We also obtain critical exponents that agree, as expected, with those of the transverse Ising model. Additionally, we treat the special case of uniform product states (mean field theory) separately, showing that they may be used to investigate noncritical quantum field theories under certain conditions.
doi_str_mv 10.1103/PhysRevD.88.085030
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701093188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1701093188</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-d3500630590161d75c1b2e82d63d0f1bb58cb08b37fdc6a70c7b2671d99b43573</originalsourceid><addsrcrecordid>eNo1kEtLAzEUhYMoWKt_wFWWbqbeTMwkWUp9QkURdRvyGhqZV5NMsf_ekdbVuZxzuBw-hC4JLAgBev223qV3v71bCLEAwYDCEZoRxqAoaSWODzeXUpyis5S-AWhZcT5DXy86x_CDh9i70Wacss4-Yd05vNUx6Bz6Tje49Xndu8kfhiZ4h3OPbQw52CnbjLrLY4vr4JspWfs-7s7RSa2b5C8OOkefD_cfy6di9fr4vLxdFZZKyIWjDKCiwCSQijjOLDGlF6WrqIOaGMOENSAM5bWzleZguZl2EyeluaGM0zm62v-d9m9Gn7JqQ7K-aXTn-zEpwoGApESIqVruqzb2KUVfqyGGVsedIqD-IKp_iEoItYdIfwHGkWfH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1701093188</pqid></control><display><type>article</type><title>Matrix product states and variational methods applied to critical quantum field theory</title><source>American Physical Society Journals</source><creator>Milsted, Ashley ; Haegeman, Jutho ; Osborne, Tobias J.</creator><creatorcontrib>Milsted, Ashley ; Haegeman, Jutho ; Osborne, Tobias J.</creatorcontrib><description>We study the second-order quantum phase transition of massive real scalar field theory with a quartic interaction in (1 + 1) dimensions on an infinite spatial lattice using matrix product states. We introduce and apply a naive variational conjugate gradient method, based on the time-dependent variational principle for imaginary time, to obtain approximate ground states, using a related ansatz for excitations to calculate the particle and soliton masses and to obtain the spectral density. We also estimate the central charge using finite-entanglement scaling. Our value for the critical parameter agrees well with recent Monte Carlo results, improving on an earlier study which used the related density matrix normalization group method, verifying that these techniques are well-suited to studying critical field systems. We also obtain critical exponents that agree, as expected, with those of the transverse Ising model. Additionally, we treat the special case of uniform product states (mean field theory) separately, showing that they may be used to investigate noncritical quantum field theories under certain conditions.</description><identifier>ISSN: 1550-7998</identifier><identifier>EISSN: 1550-2368</identifier><identifier>DOI: 10.1103/PhysRevD.88.085030</identifier><language>eng</language><subject>Charge ; Density ; Field theory ; Ground state ; Mathematical models ; Monte Carlo methods ; Quantum theory ; Variational methods</subject><ispartof>Physical review. D, Particles, fields, gravitation, and cosmology, 2013-10, Vol.88 (8), Article 085030</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-d3500630590161d75c1b2e82d63d0f1bb58cb08b37fdc6a70c7b2671d99b43573</citedby><cites>FETCH-LOGICAL-c390t-d3500630590161d75c1b2e82d63d0f1bb58cb08b37fdc6a70c7b2671d99b43573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Milsted, Ashley</creatorcontrib><creatorcontrib>Haegeman, Jutho</creatorcontrib><creatorcontrib>Osborne, Tobias J.</creatorcontrib><title>Matrix product states and variational methods applied to critical quantum field theory</title><title>Physical review. D, Particles, fields, gravitation, and cosmology</title><description>We study the second-order quantum phase transition of massive real scalar field theory with a quartic interaction in (1 + 1) dimensions on an infinite spatial lattice using matrix product states. We introduce and apply a naive variational conjugate gradient method, based on the time-dependent variational principle for imaginary time, to obtain approximate ground states, using a related ansatz for excitations to calculate the particle and soliton masses and to obtain the spectral density. We also estimate the central charge using finite-entanglement scaling. Our value for the critical parameter agrees well with recent Monte Carlo results, improving on an earlier study which used the related density matrix normalization group method, verifying that these techniques are well-suited to studying critical field systems. We also obtain critical exponents that agree, as expected, with those of the transverse Ising model. Additionally, we treat the special case of uniform product states (mean field theory) separately, showing that they may be used to investigate noncritical quantum field theories under certain conditions.</description><subject>Charge</subject><subject>Density</subject><subject>Field theory</subject><subject>Ground state</subject><subject>Mathematical models</subject><subject>Monte Carlo methods</subject><subject>Quantum theory</subject><subject>Variational methods</subject><issn>1550-7998</issn><issn>1550-2368</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo1kEtLAzEUhYMoWKt_wFWWbqbeTMwkWUp9QkURdRvyGhqZV5NMsf_ekdbVuZxzuBw-hC4JLAgBev223qV3v71bCLEAwYDCEZoRxqAoaSWODzeXUpyis5S-AWhZcT5DXy86x_CDh9i70Wacss4-Yd05vNUx6Bz6Tje49Xndu8kfhiZ4h3OPbQw52CnbjLrLY4vr4JspWfs-7s7RSa2b5C8OOkefD_cfy6di9fr4vLxdFZZKyIWjDKCiwCSQijjOLDGlF6WrqIOaGMOENSAM5bWzleZguZl2EyeluaGM0zm62v-d9m9Gn7JqQ7K-aXTn-zEpwoGApESIqVruqzb2KUVfqyGGVsedIqD-IKp_iEoItYdIfwHGkWfH</recordid><startdate>20131024</startdate><enddate>20131024</enddate><creator>Milsted, Ashley</creator><creator>Haegeman, Jutho</creator><creator>Osborne, Tobias J.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20131024</creationdate><title>Matrix product states and variational methods applied to critical quantum field theory</title><author>Milsted, Ashley ; Haegeman, Jutho ; Osborne, Tobias J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-d3500630590161d75c1b2e82d63d0f1bb58cb08b37fdc6a70c7b2671d99b43573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Charge</topic><topic>Density</topic><topic>Field theory</topic><topic>Ground state</topic><topic>Mathematical models</topic><topic>Monte Carlo methods</topic><topic>Quantum theory</topic><topic>Variational methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Milsted, Ashley</creatorcontrib><creatorcontrib>Haegeman, Jutho</creatorcontrib><creatorcontrib>Osborne, Tobias J.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D, Particles, fields, gravitation, and cosmology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Milsted, Ashley</au><au>Haegeman, Jutho</au><au>Osborne, Tobias J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Matrix product states and variational methods applied to critical quantum field theory</atitle><jtitle>Physical review. D, Particles, fields, gravitation, and cosmology</jtitle><date>2013-10-24</date><risdate>2013</risdate><volume>88</volume><issue>8</issue><artnum>085030</artnum><issn>1550-7998</issn><eissn>1550-2368</eissn><abstract>We study the second-order quantum phase transition of massive real scalar field theory with a quartic interaction in (1 + 1) dimensions on an infinite spatial lattice using matrix product states. We introduce and apply a naive variational conjugate gradient method, based on the time-dependent variational principle for imaginary time, to obtain approximate ground states, using a related ansatz for excitations to calculate the particle and soliton masses and to obtain the spectral density. We also estimate the central charge using finite-entanglement scaling. Our value for the critical parameter agrees well with recent Monte Carlo results, improving on an earlier study which used the related density matrix normalization group method, verifying that these techniques are well-suited to studying critical field systems. We also obtain critical exponents that agree, as expected, with those of the transverse Ising model. Additionally, we treat the special case of uniform product states (mean field theory) separately, showing that they may be used to investigate noncritical quantum field theories under certain conditions.</abstract><doi>10.1103/PhysRevD.88.085030</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1550-7998
ispartof Physical review. D, Particles, fields, gravitation, and cosmology, 2013-10, Vol.88 (8), Article 085030
issn 1550-7998
1550-2368
language eng
recordid cdi_proquest_miscellaneous_1701093188
source American Physical Society Journals
subjects Charge
Density
Field theory
Ground state
Mathematical models
Monte Carlo methods
Quantum theory
Variational methods
title Matrix product states and variational methods applied to critical quantum field theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A40%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Matrix%20product%20states%20and%20variational%20methods%20applied%20to%20critical%20quantum%20field%20theory&rft.jtitle=Physical%20review.%20D,%20Particles,%20fields,%20gravitation,%20and%20cosmology&rft.au=Milsted,%20Ashley&rft.date=2013-10-24&rft.volume=88&rft.issue=8&rft.artnum=085030&rft.issn=1550-7998&rft.eissn=1550-2368&rft_id=info:doi/10.1103/PhysRevD.88.085030&rft_dat=%3Cproquest_cross%3E1701093188%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1701093188&rft_id=info:pmid/&rfr_iscdi=true